
here are 2 major types of cell death, namely,
necrosis and apoptosis. Unlike apoptosis,

necrosis appears not to be involved in any
developmental context, nor to require any protein
expression. This type of cell death is mainly due to
external factors including, hypoxia, toxins and
extreme heat. The dying cells often release
lysosomal and granule contents which result in an
inflammatory process. In contrast to necrosis,
apoptosis does not induce inflammation and
mononuclear phagocytes engulfed apoptotic cells,
and is largely found in a wide variety of
physiological death settings where its role is to
remove harmful, damaged or unwanted cells.
Apoptosis is a complex, tightly regulated and active
cellular process. Well-recognized morphological
changes including: shrinkage of the nucleus and the
collapses of cytoplasm into crescents along the
nuclear envelope and blebbing of the plasma
membrane accompanies the phases of apoptosis1-6

(Figure 1). We commonly refer to the main
pathways of apoptosis to as the intrinsic and
extrinsic pathways. The intrinsic pathway centres on
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ABSTRACT

the mitochondria as initiators of cell death. Multiple
signals converge on mitochondria, including DNA
damage, hypoxia and oxidative stress, causing the
release of cytochrome c (cyt c) from mitochondrial
membrane and activation of other apoptogenic
proteins in the cytosol. Upon release into the
cytosol, cyt c binds to apoptosis activating factor
(Apaf-1) triggering its oligomerization into a
heptameric complex that binds pro-caspase-9,
forming a multi-protein structure known as the
"apoptosome". Physical binding of Apaf-1 to pro-
caspase-9 is mediated by their caspase recruitment
domains (CARDs), through homotypic CARD-
CARD binding. Activation of apoptosome-
associated cell death protease caspase-9 then
initiates a proteolytic cascade, where activated
caspase-9 cleaves and activates downstream effector
proteases such as pro-caspase-3.7-14 In contrast, the
extrinsic apoptotic pathway relies on tumor necrosis
factor (TNF)  family death receptors for triggering
apoptosis. A subgroup of the TNF family receptors
contains a cytosolic death domain that enables their
intracellular interaction with downstream adaptor
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It is increasingly clear that apoptosis plays a central role in the pathogenesis of several human diseases. For instance, an
increase in apoptosis leads to cell loss accompanied by neurodegenerative diseases, whereas we know that genetically
determined defects of apoptosis result in deregulated cell proliferation, typical of cancer. Hence, apoptosis may be
relevant as therapeutic targets for many human diseases. This article reviews briefly the regulation and the clinical
relevance of apoptotic mechanisms in several different human diseases.
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requirement for protein kinase activities in the
inhibition of apoptosis is supported by the
observation that staurosporin kills all cells types so
far tested. Staurosporin was originally isolated as a
specific protein kinase inhibitor but also inhibits
many other tyrosine kinase and serine kinases. It is
therefore, possible that staurosporin interferes with
the suppression of apoptosis mediated by distinct
kinases in different cell types. Whilst protein kinase
has been implicated in the inhibition of apoptosis, it
appears that other kinases may trigger apoptosis.
Activation of the protein tyrosine kinase p56lck is
thought to be involved in the potentiation of T cell
receptor-mediated apoptosis induced by Thy-1 antigen
engagement of thymocytes. However, the effects of
this kinase appears to be cell-type specific since
p56lck suppresses apoptosis in hematopoietic cells
upon factor deprivation.25,26

Calcium (Ca2+). Calcium2+ receives the most
attention in studies of apoptosis, which is one of the
intracellular signals. Several experiments show that
an increase in intracellular Ca2+ concentration may
be involved in apoptosis. Additionally, treatment
with agents that increase intracellular Ca2+

concentration (such as Ca2+ ionophores) trigger
apoptosis in many cells.27-29  However, an increase in
Ca2+ concentration is not a universal requirement for
apoptosis. Indeed, increasing intracellular Ca2+

concentrations by treatment with Ca2+ ionophores
inhibits apoptosis in hemopoietic IL-3 dependent
cells upon factor deprivation. In a similar fashion to
the regulation by survival factors (namely
cytokines), the regulation of apoptosis by
intracellular Ca2+ also appears to be specific to
certain cell types or apoptotic triggers. 

Protein kinase C (PKC). Another signaling
molecule implicated in the control of apoptosis is
PKC. Activation of PKC by treatment with phorbol
ester induces apoptosis in thymocytes.30,31 In
contrast, the activation of PKC is associated with
the inhibition of apoptosis in thymocytes and
leukemic B cells. Moreover, phorbol ester can block
TNF-induced apoptosis and PKC antagonists can
induce death.31 The regulation of apoptosis by PKC
appears to be cell type specific or dependent on the
experimental conditions used.

Cyclic AMP (cAMP). Cyclic AMP is another
signaling molecule implicated in apoptosis in
certain situations. Similarly, the effects of cAMP
appear to be cell type or context specific. Agents
that elevate cAMP induce thymocyte apoptosis,
whereas, cAMP analogues inhibit neuronal
apoptosis upon nerve growth factor deprivation and
result in the death of T cell hybridomas following T
cell receptor-activation.32,33 

Ceramide. Ceramide is a complex lipid
produced upon hydrolysis of sphingomyelin by
sphingomyelinase, and has also been proposed to
regulate apoptosis. Tumor necrosis factor,34 Fas,31

proteins, linking this receptor to intracellular
specific caspases. Upon ligand binding, TNF family
receptor containing cytosolic death domain cluster
in membranes, recruiting both a death domain and a
death effector domain (DED). The DED of Fas
associated death domain (FADD) binds to DED-
containing procaspse-9 and -10, forming a death
inducing signaling complex (DISC) and resulting in
caspase activation.15-21 A delicate balance between
pro-apoptotic and anti-apoptotic regulators of
apoptosis pathways is at play on a continual basis,
ensuring the survival of long-lived cells and the
turnover of short-lived cells in a variety of tissues,
including the bone marrow and thymus. However,
an imbalance in this delicate balance of pro- and
anti-apoptotic proteins occurs in many disease
scenarios including cancer where the imbalance is in
favor of anti-apoptotic proteins, endowing cells with
a selective survival advantage that promote
neoplasia and malignancy.

Regulation of apoptosis by intra-
cellular signals. Tyrosine kinase. Many
known survival factors directly activate receptors
with intrinsic tyrosine kinase activity. Among these
receptors are epidermal growth factor, fibroblast
growth factor, platelet-derived growth factor, and
insulin growth factor. The downstream target that
mediates anti-apoptotic effects of these survival
factors have yet to be addressed. It also implicated
phosphatidylinositol (PI-3) kinase in the suppression
of apoptosis in rat pheochromocytoma (PC-12)
cells. In serum-free medium PC-12 cells undergo
apoptosis unless protected by survival factors such
as epidermal growth factor and nerve growth factor.
Two specific inhibitors of PI-3-kinase wortmannin
and Ly294002 prevent this protection. While PI-3
kinase implicates the survival of PC-12 cells, it is
likely that the signaling pathways involved in
survival are the cell type and cytokine specific. The
pathways mediating survival from many cytokines
are presently unknown. Some survival factors, such
as interlukin-3 (IL-3), activates receptors that
possess no intrinsic kinase activity. Kinoshita et al22

showed experimentally that IL-3 might suppress
apoptosis via the activation of the Ras/Raf-1/MAP
kinase pathways.22 The notion that H-Ras may be
involved in the suppression of apoptosis is
supported by the observation that activated H-Ras
inhibits apoptosis in myeloid leukemia cells.23

Conversely, a dominant negative mutant of H-Ras
induces apoptosis in a human chronic myeloid
leukemia cell line.24  Another non-receptor protein
kinase which appears to be involved in the
regulation of apoptosis in the protein tyrosine kinase
Abl. Transfection of cells with a constitutively
active form of protein tyrosine kinase Abl inhibits
apoptosis induced by removal of survival factors or
treatment with chemotherapeutic drugs. The
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the pathogenic mechanism of autoimmune diseases.
Also, a decrease in the clearance of apoptotic cells
might be a contributing factor in systemic
autoimmunity.49  Immunologically, a great deal of
evidence suggests that during the immune
repertoire, any lymphocytes that recognize our self
cells will be deleted by apoptosis.50,51  Defects in the
deletion mechanism of auto-reactive T cells might
play a critical event in the initiation and
maintenance of autoimmune diseases. The
lymphoproliferative (lpr) mice encoding a defective
Fas gene show resistance in their lymphoid cells to
apoptosis.52,53  Like Fas, FasL-deficient mice
develop generalized lymphoproliferative disease
with autoimmunity identical to that in lpr/lpr.54

These mice develop lymphadenopathy rapidly and
systemic lupus erythromatosis-like autoimmune
disease. Previous study demonstrates the different
strains of lpr mice that develop various patterns of
auto-antibodies which indicates the involvement of
other unknown genetic factors.55,56 A common feature
characterized systemic lupus erythromatosis and
rheumatoid arthritis, which are the imbalance
between the production and loss of lymphocytes and
synovial cells.  Previous studies57,58 noted that all
potent inducers of apoptosis such as steroids and
cyclophosphamide are among the identifiable
therapies of autoimmune diseases. It is well
established that any defect in the clearance
mechanism of lymphoid cells and other cells dying
by apoptosis might be crucial in the maintenance of
autoimmune diseases. This concept has been
developed by findings that unknown factors block
phagocytic ingestion of apoptotic cells, so that the
dead cells engulfed and cleared away whilst intact,
but rather leak their contents, which include endo-
nucleases. These circulating nucleosomes  detect lupus.59

Insulin dependent diabetes mellitus (IDDM) is
likely to be associated with an inhibition of apop-
tosis. The resistance of T cells to apoptosis in non-
obese diabetic (NOD) mice has recently been
associated with upregulation of the anti-apoptotic
Bcl-x protein in T cells. This finding in the NOD
mouse may open a new research field for diabetes-
susceptibility genes in human IDDM. It had been
shown that both ß and T cells from subjects with
IDDM and those at risk for the disease are highly
defective in the surface expression of Fas. This led
the authors to hypothesize that loss of tolerance in
IDDM may be partly explained by a defective
expression of Fas.60  Cytotoxic T-cells destroyed the
ß-cells  using perforin or granzymes as effector
molecules. Perforin causes lysis of the target cell,
whereas granzymes A and B mainly cause apop-
tosis. Recent studies revealed that the ß-cell is one
of the most susceptible cells for endoplasmic
reticulum (ER) stress, and ER stress-mediated
apoptosis in the ß-cells can be a cause of diabetes. A
comprehensive understanding of the impact of the

synthetic ceramide analogues and exogenous
sphingomyelinase-mediated apoptosis are associated
with a rapid increase in ceramide concentration.35

The role of ceramide in other apoptotic systems has
yet to be addressed.

Regulation of Fas-mediated apoptosis by FLICE
inhibitory proteins (FLIPs). Thome et al36

identified certain herpes proteins and named viral-
FLICE-inhibitory proteins (v-FLIPs), due to their
ability to bind to the Fas/FADD complex and inhibit
FADD-like ice (FLICE) activation.  Shortly after-
wards 2 human homologues to v-FLIPs were dis-
covered by several groups and became known by
various names: inhibitor of FLICE,37 FADD-like
anti-apoptotic molecule (FLAME)38 caspase-8-
related protein (Casper)39 or caspase-like apoptosis
regulatory protein (CLARP).40  They show to bind it
to the Fas and thereby inhibit activation of caspase-
8.36  They also found v-FLIPs inhibit apoptosis
induced by several triggers other than Fas, such as
tumor necrosis factor receptor-1 (TNFR1) and death
receptor-3 (DR3), which uses a similar signaling
pathway by these receptors.

Regulation of mitochondria-induced apoptosis. B
cell lymphoma-2 (Bcl-2) family proteins regulate
the mitochondrial apoptotic pathway. B cell
lymphoma-2 is localized on the endoplasmic
reticulum, nuclear membrane and outer mito-
chondrial membrane.41-43 There are 2 theories
concerning the relationship between the Bcl-2
family and mitochondrial transmembrane potential.
The first is that Bcl-2 and Bcl-xL are able to inhibit
mitochondrial dysfunction, including the mito-
chondrial membrane potential loss and permeability
transition,44 thereby inhibiting the release of apopto-
genic proteins such as cyt c and apoptosis-induced
factor,45,46 which eventually blocks the activation of
caspase-9. Therefore, it blocks the activation of the
terminal effector caspase-3. The second suggests
that the Bcl-2 family prevents both cytochrome-c
release and Apaf-1 activation47,48 because Bcl-xL
binds to Apaf-1 inhibiting its association with
cytochrome-c. B cell lymphoma-xL also binds to
procaspase-9 inhibiting its association by Apaf-1
and resulting in eventual blockade of terminal
caspase activation.46,47  The first theory is the most
likely to be correct since it localized Bcl-2 in the
mitochondrial membranes, although the other theory
should remain under consideration until
unequivocally refuted (Figure 2).

Diseases associated with a decrease
in apoptosis.  Autoimmunity. Recent data
suggests that defective regulation of apoptosis in
lymphoid cells may be a factor that contributes to
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Figure 1 - Phases of apoptosis a) normal resting cell b) cell volume is lost and chromatin clumped c) blebbing
process d) chromatin collapsed into the margins of the nuclear envelope e) apoptotic cell breaks down
into apoptotic bodies f) apoptotic bodies ingested by macrophage.

Figure 2 - Relationship between Bcl-2, cytochrome-c release and caspase-3 activation.
Cyt c - cytochrome c, Apaf 1 - apoptosis activating factor, ATP  - adenosine
triphosphatase.

Figure 3 - Kinetic determinants of progenitor cell population size. SR - Self-renewal,
D - Differentiation, A - Apoptosis.
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showed that Bcl-2 antisense oligonucleotides
reduced tumor mass in 2 patients with non-
Hodgkin's lymphoma. They showed a reduction in
Bcl-2 protein levels after treatment.81 It has been
found that Bcl-2 is highly expressed among CML
patients in blast crisis phase (BC), but not in chronic
phase.82 Preisler’s group83 shows a significant diffe-
rence in the Bcl-2 expression among accelerated
phase-CML and BC-CML patients compared both
to treated and untreated chronic phase-CML
patients. An antisense Bcl-284 molecule abolished
the protective function of break point cluster region-
Ableson (BCR-ABL) following IL-3 withdrawal
from cell lines; however, there is still controversy
about whether Bcl-2 and Bcl-xL is involved in the
inhibition of apoptosis of leukemic cells. It shows
that transfection of HL-60 with BCR-ABL protein,
leads to up-regulation of Bcl-xL.85,86 In a CLL study,
Kitada et al87  demonstrates the presence of high
levels of Mcl-1 (anti-apoptotic protein) correlated
significantly with poor remission.87 Interestingly, the
expression of Bcl-2 is down regulated after treat-
ment with a signal transduction inhibitor (Imatinib,
STI571 Novartis), showing involvement of this
protein in the pathogenesis of CML.88,89 Wild type
p53 is a tumor suppressor gene,90-92 which is
inactivated either by deletion or mutation in many
human cancers.93 Deletions or mutations of p53
have been noted in many hematological disorders
including: CML94 and CLL.95-97 Wild type p53
induces cell death following DNA damage93 and
treatment with inhibitory negative cytokines.98

Hemopoietic myeloid progenitor cells from p53
knockout mice are resistant to apoptosis induced by
heat shock and γ-irradiation.99 Additionally, thymo-
cytes derived from p53 knockout mice were found
to be resistant to apoptosis induced by γ-
irradiation.100,101 Inactivation of the tumor suppressor
gene p53 was found in 20-40% of BC-CML
patients. Like other tumors, mutation of p53 in
CML is associated with disease progression. Bis et
al102 and Lanza et al103 show that p53 synergizes with
p210 BCR-ABL protein when a p53 mutant was
transfected into CD34+ cells from blast crisis CML
samples, thus promoting the survival and prolife-
ration of CML progenitor cells. Apoptosis induces
transduction of the wild type p53 into a Burkett's
lymphoma cell line containing mutant p53.104 The
chromosomal translocation t(9;22) is the hallmark
of CML, and results in the fusion of 5’end of BCR
gene 22q11 with 3’end of ABL gene on 9q11
known as Philadelphia (Ph+) chromosome. This
translocation is seen in 20% of adult acute
lymphocyte leukemia (ALL), 5% of pediatric ALL’s
and rarely in acute myeloid leukemia.105-107 Anti-
apoptotic effects, high proliferation and defects in
the adhesion mechanism between primitive
progenitor cells and stromal cells are considered to
result from BCR-ABL fusion protein. These defects

ER stress pathway in the ß-cells and how it relates
to the development of diabetes may contribute to
provide new targets for the prevention and treatment
of this disease.61-66 Two important factors in the
etiology and pathogenesis of diabetes are: (1)
Apoptosis in the regulation of the ontogenic
development of pancreatic islets; (2) Apoptosis in
the ontogenetic development and function of the
immune system. The death of ß-cells in autoimmune
diabetes, results from the cytolysis of antigen-
specific CD8 T cells. Wong et al60  shows to be
possible in vitro where certain CD8 clone can
transfer diabetes in the complete absence of CD4 T
cells in lymphocytes-deficient recipient.67 Fas
normally, not expressed in ß-cells, was upregulated
by transfer of diabetogenic cells. This observation
indicates that Fas-mediated ß-cells apoptosis,
triggered by diabetogenic helper T cells, is an
important mechanism of ß-cell killing in the NOD
mice model. Fas ligation using its agonistic
monoclonal antibody induces a rapid tyrosine
phosphorylation of Jun-amino terminal kinase (Juk)
and formation of activator protein-1 corresponding
to apoptosis of rheumatoid arthritis (RA).68

Additionally, over expression of DAXX, a novel
Fas death domain associated protein, induces
activation of Juk  and potentiated Fas-mediated
apoptosis.69  Fas ligation induces activation of
caspase-3 and the cleavage of poly adenosine deoxy
phosphatase (ADP) ribose polymerase (PARP) in RA
synoviocyte.70  Therefore, the FADD/caspase-8/
caspase-3/PARP pathway appears to be the key
signal for Fas-mediated apoptosis in RA
synoviocytes, suggesting signal transduction via the
Fas molecule regulated  the Fas-mediated apoptosis
in synoviocytes.

Hematological malignancies. Aberrant inhibition
of apoptosis prevents normal homeostasis and
promotes tissue tumorigenesis (Figure 3). In
addition, acquisition of the ability to evade cellular
suicide or apoptosis is one of the master switches
that contributes to cellular transformation and
ultimately invasive cancer. Also, the responsiveness
of tumors to chemotherapy in part derives from the
capability of cells to undergo apoptosis.71 One of the
best characterized apoptotic signaling cascades
follows the engagement of Fas/Apo-1/CD95 with its
ligand FasL/CD95L. An increase in Fas/CD95
expression has been found on myeloid progenitor
cells from patients with chronic myeloid leukemia
(CML), myelodysplasia and aplastic anemia
compared to normal marrow progenitors.72-74 Roth et
al75 and Leithauser et al,76  found elevated serum
levels of Fas in beta-chronic lymphocytic leukemia
(CLL) patients.  Previous studies found that Bcl-2
expression correlates with a poor response to
chemotherapy in acute myeloid leukemia.77-79

Treatment with Bcl-2 antisense oligonucleotides
sensitizes cells to undergo apoptosis.80  Webb et al81
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by producing an inhibition for IL-1 converting
enzyme (ICE),  similar to cowpox gene ceramide-A
(crm-A) in which it acts as specific inhibitor for
ICE.127  Additionally, crm-A appears to be involved
in the inhibition of inflammatory response
development against viral infection and thereby
contributing to the viral pathogenesis.127,128 Viral
latency is an important event especially during
Epstein-Barr virus (EBV) infection, the viral gene
latent membrane protein-1 (LMP-1) produced
during latency, upregulates Bcl-2 expression, thus
providing a proper survival environment to latency
infected cells.129  Transfection of LMP-1 into
apoptosis-sensitive ß-cell lines can render them
resistant to cell death.130  Exceptionally, apoptosis is
a general phenomenon in severe acute respiratory
syndrome (SARS) and the invasive cells in the
pathological tissues are primarily monocytes,
suggesting that apoptosis and invasion of monocytes
play important roles in the progression of SARS.
The cell apoptosis and decreased number of T cell
and ß-cells in the lungs and CD4+CD8+ T cells and
CD20+/CD45RA+ ß-cells in the spleen and lymph
nodes indicate that the SARS virus may exercise an
immune cell-killing effect to some extent during its
pathogenesis.131 

Diseases associated with an increase
in apoptosis.  Acquired immune deficiency
syndrome (AIDS). Inappropriate induction of
CD4+ T cell apoptosis by the human immuno-
deficiency virus (HIV) may be relevant to the
pathogenesis of AIDS.132 A viral transcription gene-
Tat- was demonstrated to affect mRNA trans-
cription of some genes which seems to be involved
in the cell survival. Moreover, the Tat gene was
identified to upregulate the expression of Bcl-2
oncogenic protein, thereby, protecting the cell from
apoptosis.133 The early observational studies in
apoptosis of AIDS pathogenesis have shown that
peripheral blood T cells from HIV-infected indivi-
duals were highly sensitive to in vitro-induced cell
death.  In fact, the incubation of T cell from HIV
patients alone in medium will trigger apoptosis
shortly after short term culture.134-136 In addition,
following activation with a wide variety of inducers
including mitogens, super-antigens will increase
significantly the percentage of apoptotic cells.134,137

Amendola et al138 highlighted that T cells from
lymph nodes and peripheral blood of HIV patients
are expressing tissue transglutaminase (tTG) and a
Ca2+ - independent enzyme. These 2 factors seem to
be involved in the pre-apoptotic process.138  It is
becoming more evident that, not only CD4 subset is
primed for apoptosis in HIV infection, but also CD8
subset.139 Interestingly, only activated T lympho-
cytes expressing CD45RO, HLA-DR, CD38 have
shown to be more prone to apoptosis compared with

are therefore likely to be responsible for myeloid
expansion, and these include defects in
adhesion,108,109 self-renewal,110,111 insensitivity to
negative regulators112-114 and defects in apoptosis. In
CML, proliferation increases and proposed
resistance to apoptosis as a mechanism accounting
for myeloid cell expansion. For this reason, it needs
further research in order to identify specific protein
substrates for BCR-ABL and their role in apoptosis.
When BCR-ABL transduces into hemopoietic cell
lines, they become growth factor independent. A
reduction of apoptosis might result in the expansion
of progenitor cells in CML. Several studies show
that cell lines transfected with BCR-ABL are
protected from apoptosis.115-120  BCR-ABL protects
growth factor-dependent murine cell lines from
apoptosis caused by growth factor deprivation,
irradiation, and exposure to chemotherapeutic agents.
This suggests that BCR-ABL p210 may increase the
survival of CML cells and rescue them from
undergoing apoptosis. Inhibition of the BCR-ABL
kinase reverses the anti-apoptotic effects of BCR-
ABL and is associated with downregulation of Bcl-
x.121 However, the exact mechanism underlying the
inhibition of apoptosis in the cell lines by BCR-
ABL remains to be elucidated. Bedi et al122 noted
that expression of the BCR-ABL chimeric gene
produced by a balanced translocation in chronic
myeloid leukemia, conferred resistance to multiple
genotoxic anticancer agents, and that BCR-ABL
expression inhibited the apoptotic response to DNA
damage without altering either G1 arrest or DNA
repair. They felt that the inherent resistance of
human cancers to genotoxic agents may result not
only from the loss or inactivation of the wild-type
p53 gene, but also from the genetic alterations such
as BCR-ABL that can delay G2/M transition after
DNA damage. It is relevant to point out that BCR-
ABL activates Ras, which leads to an increase in the
transcription of c-Myc, and protection of cells from
apoptosis.123 Increased survival of progenitors,
precursors and mature Ph+ cells, could lead to
abnormal accumulation of these cells in blood and
marrow. Amarante et al124 demonstrates p185 BCR-
ABL inhibits apoptosis in response to many stimuli
in HL-60 and K562 cell lines by blocking the cyt c
release from mitochondria, and thereby inhibiting
caspase-3 activation.

Viral infections. Viral infection may also cause
apoptosis through direct viral cytotoxicity, induc-
tion of tumor necrosis factor, or conflicting signals
controlling cell growth. Apoptosis was found to be
part of the viral pathogenesis in case of adenovirus
and influenza viruses, while other viruses can
inhibit apoptosis namely baculovirus gene p35. Both
p35 gene and inhibitor of apoptosis (IAP) found in
baculovirus are able to inhibit apoptosis in a
response to large number of triggers.125,126  Like
baculovirus, Pox virus seems to abolish apoptosis
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of the everyday armamentarium of clinicians who
are treating neurological diseases that involve
caspase-mediated cell dysfunction and cell death.152

Alzheimer's disease is associated with the
continuous accumulation of beta-amyloid peptide.
In addition, mutation of beta-amyloid precursor
proteins are mainly connected with Alzheimer's
disease. Just recently identified, several investi-
gators demonstrates that beta-amyloid proteins
induce the neurons to undergo apoptosis.153,154 Ultra-
structural analysis of neurons exposed to amyloid ß
revealed the morphological changes of apoptosis.155

Exposure of cultured neurons against amyloid ß
results in caspase activation and caspase inhibition
protect these neurons against amyloid ß-induced
apoptosis, consistent with the involvement of
apoptosis cascade in the neurodegenerative action of
amyloid ß.156 There is evidence that mitochondrial
reducing potential and cellular adenosine triphos-
phatase  levels decrease following exposure of
cultured cells to amyloid ß.157 Additionally and more
importantly, the transcriptional factor nuclear
factor-kß is increasingly implicated in the preven-
tion of neuronal apoptosis.158 Spinal muscular
atrophies are group of recessive neurodegenerative
origin diseases characterized by gradual spinal cord
motor loss. Neuronal apoptosis inhibitory protein is
one of candidate genes, which is homolog to
baculovirus inhibitor of apoptosis.159  As it has been
reported previously that baculovirus inhibitor of
apoptosis is able to prevent apoptosis in many cell
types. Berry and Boulton160 augmented that any
mutation in neuronal apoptosis inhibitory protein
gene might render motor neurons more sensitive to
cell death.

Myocardial infarction. In the context of
myocardial infarction, apoptosis contributes to the
total amount of cell death.161  In myocardial
infarction in humans, apoptosis has been observed
in 3 different regions: (a) in the core of the ischemic
myocardial area, (b) in the border zone of the
infarction, and (c) in the viable myocardium, remote
from the ischemic area. It was shown in an animal
model that the increased apoptosis in remote areas
after myocardial infarction is associated with an
increase in the expression of pro-apoptotic proteins
p53, Bax and of caspase-3.162 In attempting to
answer the question of whether apoptosis is a
clinically important phenomenon in the context of
myocardial infarction, one should study the effect of
apoptosis inhibition. Several publications described
the decrease in the number of terminal
deoxynucleotide transferase (TdT) deoxyuridine
triphosphate (dUTP) nick end labeling (TUNEL)-
positive cells in response to pharmacological
interventions. Using the non-specific caspase
inhibitor (benzyloxycarbonyl-Val-Ala-Asp [ZVAD]),
the number of TUNEL-positive cells and the infarct
size  reduces in a rat model of ischemia-reperfusion.

controls.140,141 Histopathological studies from lymph
nodes and thymus of HIV-infected individuals show
that apoptosis occurs in the neighboring cells not
only in the infected cells.142 This observation is
supported by ex-vivo experiments which show that
approximately 50% of peripheral blood lympho-
cytes from HIV-infected individuals undergo
apoptosis.143 The underlying mechanism that lead to
CD8 T cells anergy and apoptosis are not yet well
understood. It has been suggested that CD8 T cells
from HIV-infected individuals behave in a similar
manner as if they are deprived of cytokines.144 

Neurodegenerative diseases. Acute and chronic
neurodegenerative diseases are illnesses associated
with high morbidity and mortality, and few or no
effective options are available for their treatment. A
characteristic of many neurodegenerative diseases
which include stroke, brain trauma, spinal cord
injury, amyotrophic lateral sclerosis (ALS),
Huntington's disease, Alzheimer's disease, and
Parkinson's disease is neuronal cell death. Given
that central nervous system tissue has very limited
regenerative capacity, it is of utmost importance to
limit the damage caused by neuronal death. There
are 2 essential factors; firstly, Bcl-2 over-expression
might decline the neurotoxicity of the potential
inducers. Secondly, neurotrophic growth factor and
extracellular matrix also affect the cell death of
neurons.145,146  Caspases have a pivotal role in the
progression of a variety of neurological disorders. In
acute neurological diseases, both necrosis and
caspase-mediated apoptotic cell death occur.147 By
contrast, in chronic neurodegenerative diseases,
caspase-mediated apoptotic pathways have the
dominant role in mediating cell dysfunction and cell
death.148  A primary difference between acute and
chronic neurological diseases is the magnitude of
the stimulus causing cell death. The greater stimulus
in acute diseases results in both necrotic and
apoptotic cell death, whereas the milder insults in
chronic diseases initiates apoptotic cell death.149

Intervention in upstream events of apoptosis by anti-
apoptotic therapy provides morphological and
functional rescue. In contrast, inhibition of the
propagation and execution phase of apoptosis,
namely by inhibition of caspases, blocks or delays
cell death but may not recover neuronal function.150

At this stage, the combination of an anti-apoptotic
together with a neuro-restorative therapy may be
promising.151 Activation apoptotic pathways are a
feature of a broad range of neurological diseases
that makes them important and attractive therapeutic
targets. Pharmaceutical companies are actively
searching for compounds that inhibit these
pathways. The first clinical trials of an inhibitor of
apoptosis (minocycline) for neurodegenerative
disorders (Huntington's disease and ALS) are in
progress. It is likely that in the next several years,
additional inhibitors of apoptosis will become part
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-3, only the amount of TUNEL-positive cells
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In conclusion, there have been huge advances in
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continue to occupy a central position in biology and
medicine research over the coming years.
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