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Obesity is closely linked to a roster of chronic 
metabolic abnormalities including insulin 

resistance, type 2 diabetes mellitus, hypertension, 
hyperlipidemia, atherosclerosis, and even cancer. 
Obesity has reached an epidemic proportion and has 
focused attention on the biology of adipose tissue. White 
adipose tissue (WAT) for a long time was regarded as a 
site of energy store in the form of triglycerides.1 This 
energy is accumulated during periods of excess food 
intake and mobilized when calorie intake is inadequate. 
Adipocytes provide a large energy storage capacity mainly 
in the form of triglycerides.2  During feeding, the levels 
of insulin, glucose, and nutrients increase to stimulate 
energy storage in the liver and adipocytes. Conversely, 
fasting enhances glycogenolysis, and gluconeogenesis via 
activation the sympathetic nervous system, increasing 
the levels of glucagon, epinephrine, and glucocorticoids 
leading to maintenance of the glucose supply to the 
brain and vital organs.2 Prolonged fasting also stimulates 
lipolysis, generating fatty acids to be used by muscle, 
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ABSTRACT

انتشار السمنة لفت الانتباه إلى طبيعة الأنسجة الدهنية، إذ تعتبر 
الأنسجة الدهنية البيضاء غدة صماء تفرز العديد من البروتينات 
المعروفة باسم أديبوكاينز مثل اللبتين والأديبونكتين والريسيستين 
ومضاعفاتها.   السمنة  في  دور  لها  أخرى  وعوامل  والفيسفاتين 
ولقد وجد أن مستوى اللبتين وإنتاجه يزداد في حالات السمنة 
نتيجة لوجود مقاومة لعمل اللبتين ربما تكون ناتجة عن نقص في 
مستوى انتقاله في المخ أو تثبيط عمله في الغدة تحت السريرية، 
وتشجيع  الشهية،  تثبيط  هو  للبتين  الأساسي  العمل  ويعتبر 
أكسدة الدهون وتقليل مستوى الجلوكوز في الدم وتقليل الوزن 
والدهون.  أما الأديبونكتين يعتبر نقصه مصاحب لحالات المقاومة 
للأنسولين، وخلل الدهون في الدم وتصلب الشرايين في الإنسان 
من  السكري  بمرض  للإصابة  مؤشر  يعتبر  النقص  وهذا  والفئران 
النوع الثاني.  وبالنسبة للرسيستين في الإنسان فإنه يفرز بقلة من 
النسيج الدهني وبكثرة من نخاع العظم والرئة، ودوره في تنظيم 
السكر بالدم لا يزال غامض لقد وجد أنه مصاحب لحالات مقاومة 
بعض  أثبتت  ولقد  الدراسات.   بعض  في  والسمنة  الأنسولين 
الدراسات أن زيادة مستوى الفيسفاتين في الدم والأنسجة الدهنية 
في حالات السمنة لكي يحافظ على الحساسية للأنسولين، وهو 
يشابه الأنسولين في عمله حيث أنه يزيد استهلاك الجلوكوز في 
الأنسجة الدهنية ويثبط  إنتاج الجلوكوز من الكبد، كما يساعد 
على تنشيط مستقبل الأنسولين.  وما زالت الدراسات مستمرة 

لتضيء الضوء على دور الأديبوكاينز لدى الأمراض الأيضية. 

White adipose tissue is an endocrine organ producing 
numerous proteins known as adipokines, which 
include leptin, adiponectin, resistin, visfatin, and 
other factors, which are involved in most metabolic 
disorders. In obesity, plasma leptin concentrations are 
high due to leptin resistance that may result from the 
attenuation of leptin signaling in the hypothalamus. 
Leptin acts to inhibit appetite, stimulate  
thermogenesis, enhance fatty acid oxidation, decrease 
glucose, and reduce body weight, and fat. A reduced 
adiponectin level has been associated with insulin 
resistance, dyslipidemia, and atherosclerosis, and its 
low level is a predictor of later development of type 
2 diabetes. Resistin expression is low in adipose 
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tissue and high in bone marrow and lungs, its role 
in glucose homeostasis remains controversial, it has 
been associated with insulin resistance and obesity. 
Visfatin is a secretory protein highly enriched in 
visceral adipocytes, liver, muscle, and lymphocytes. 
An increase of visfatin levels in obesity was related to 
preservation of insulin sensitivity, it enhances glucose 
uptake by adipocytes and inhibits hepatocyte glucose 
release, it induces tyrosine phosphorylation, and 
interacts with insulin receptors. Many studies are still 
being conducted to highlight the role of adipokines in 
metabolic disorders.
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liver, and peripheral organs, and providing ketones 
for the brain.2 The increase in WAT mass in obesity is 
associated with profound histological and biochemical 
changes characteristic of inflammation.3,4 Studies in 
obese humans and rodents have shown an increase in 
activated macrophages that form giant cells, which 
produce tumor necrosis factor (TNF)-a, interleukin-
6 (IL-6), various cytokines, and C-reactive protein.3,4 
The levels of intracellular cell-adhesion molecule-1 and 
platelet/endothelial cell adhesion molecule-1 increase 
in adipose endothelial cells, inducing the migration 
and adhesion of monocytes.2,5 The aim of this article 
is to highlight the main role of various adipokines in 
the pathophysiology of some metabolic disorders such 
as obesity, inflammation, diabetes, and atherosclerosis. 
And finally, although diet and exercise remain the gold 
standards of obesity treatment, novel interventions have 
to be discovered that would give promising results in at 
least controlling if not preventing both the exponential 
growth of the obese population and the morbid 
complications of being chronically obese.

Literature review. A number of studies1,6 indicate 
that WAT is an endocrine organ producing numerous 
proteins known  as adipokines, such as leptin, 
adiponectin, acylation stimulating protein, and 
other factors, which are important and involved in 
maintaining energy homeostasis.7 Adipokines are also 
involved in obesity associated complications, such as 
insulin resistance, endothelial dysfunction, arterial 
hypertension, and atherosclerosis.6 

Leptin. Leptin comes from the Greek word leptos 
meaning thin and it is termed the obese (ob) gene. 
Cloning of the ob gene was demonstrated.8 The ob 
gene is a 16kD peptide hormone, synthesized by fat 
cells mainly by adipocytes, although a number of 
tissues including the gastric fundic epithelium, 
intestine, placenta, skeletal muscle, mammary 
epithelium, and brain produced leptin in low levels.9 
Leptin is secreted into the blood stream and circulates 
in free or inactive bound form, the concentration of 
leptin is higher in obese than lean individuals.10 The 
ob/ob mice are obese because they fail to produce 
leptin, whereas Leprdb/db mice are resistant to leptin 
because of a mutation in one of the leptin receptors.11 

Leptin replacement in the ob/ob mice causes a marked 
reduction in food intake and a reduction in the body 
weight.12-14 The leptin structure is similar to members 
of the long-chain helical cytokine family.15,16 A disulfide 
bond between cysteine 96 and cysteine 146 are 
important for structure folding and receptor binding.16 
The biological activity of leptin is localized in the 
carboxy-terminal of the protein, in the domains 
between residues 106-167.17,18 The peak in serum leptin 
level is highest between midnight and early morning 

and lowest around noon to mid-afternoon.19 This 
circadian rhythmicity of leptin is similar to the 
circadian rhythmicity of thyrotropin, prolactin, free 
fatty acid, and melatonin,20 but inversely related to that 
of adrenocorticotropic hormone (ACTH) and 
cortisol.21 A higher leptin level in women is explained 
partly by increased production in subcutaneous adipose 
tissue and stimulation by estrogens. Chronic 
glucocorticoid exposure, TNF-a, and IL-6 also increase 
leptin. On the other hand, leptin is suppressed by 
androgens in males, and by adrenergic stimulation.10 
Circulating leptin levels exhibit pulsatile release with 
pulse duration of approximately 30 minutes, which is 
inversely related to rapid fluctuations in plasma cortisol 
and adrenocorticotropic hormone (ACTH).21,22 Leptin 
pulsatility is synchronous to the pulsatility of circulating 
luteinizing hormone (LH) and oestradiol in normal 
women.23 Leptin is one of the well documented 
hormones of the adipose tissue in terms of physiology 
and pathology. It was first identified as the product of 
the ob gene in leptin deficient obese (ob/ob) mice and 
was originally described as a circulating hormone 
involved in feeding behavior and energy homeostasis.24 
Obesity is associated with high plasma leptin 
concentration and with leptin production. This rise in 
endogenous leptin or with exogenous leptin treatment 
was unable to prevent weight gain in obese humans 
and rodents. This apparent “leptin resistance” may 
result from a decrease in brain transport or attenuation 
of leptin signaling in the hypothalamus.9,25 Also, leptin 
resistance has been attributed to induction of the 
suppressor of cytokine signaling 3 (SOCS3) and 
protein tyrosine phosphatase 1B, which normally 
inhibits leptin signal transduction.7,26-29 The leptin 
receptor (LR) belongs to the cytokine receptor class I 
family, containing extracellular ligand-binding, 
transmembrane, and cytoplasmic signaling domains.25,30 
There are various leptin receptor isoforms LRa, LRe, 
and LRb, however, leptin’s effects on energy homeostasis 
are thought to involve the long receptor LRb, especially 
in the brain.7,9 Leptin transports across the blood-brain 
barrier (BBB) through a saturable mechanism, but the 
specific mechanism of the “leptin transporter” is still 
unknown.31,32 Leptin controls specific neurons within 
the hypothalamus, brain stem, and other regions of the 
CNS.9 Leptin uptake is high in the hypothalamus, 
which is consistent with the role of the hypothalamus 
in energy homeostasis. Fatty acids and amino acids 
have also been implicated in the disruption of leptin 
signaling in the hypothalamus.7,34,35 The biological role 
of leptin uptake in the hippocampus, olfactory tubercle, 
thalamus, and cerebral cortex is still unclear.33 High 
LRb expression is present in the arcuate, dorsomedial, 
entromedial, and ventral premamillary hypothalamic 
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nuclei, moderate LRb expression is present in the 
periventricular region and posterior hypothalamic 
nucleus, and low LRb levels are expressed in the 
paraventricular nucleus (PVN) and lateral hypothalamic 
area (LHA).9,36 Leptin crosses the blood-brain-barrier, 
and acts directly on neurons in the arcuate nucleus that 
express neuropeptide Y (NPY), agouti-related peptide 
(AGRP), pro-opiomelanocortin (POMC), and cocaine-
and amphetamine-regulated transcript.4 An increase in 
leptin directly suppresses the orexigenic peptides NPY 
and AGRP in the arcuate nucleus and indirectly 
inhibits the melanocortin-concentrating hormone 
(MCH) and orexins, which are expressed in the LHA.7 
Leptin increases the level of anorectic peptides, α-
melanocyte stimulating hormone (α-MSH) derived 
from POMC and cocaine and amphetamine-regulated 
transcript, produced by neurons in the lateral arcuate 
nucleus. These project to the PVN to increase 
corticotrophin-releasing hormone, thyrotropin 
releasing hormone, and oxytocin. The net action of 
leptin is to inhibit appetite, stimulate thermogenesis, 
enhance fatty acid oxidation, decrease glucose, and 
reduce body weight and fat.7,37-39 Leptin acting through 
LRb has been shown to regulate insulin receptor 
substrate 1 and 2, mitogen-activated protein kinase, 
extracellular signal-regulated kinase, AKt and PI3 
kinase, raising the possibility of cross-talk between 
leptin and insulin.7,40 The leptin signal is transmitted 
by the Janus Kinase (JAK)-signal transducer and 
activator of transcription (STAT) pathway. Binding of 
leptin to LRb results in autophosphorylation of JAK1 
and 2,  and activation of STAT3.30 The leptin signal is 
terminated through induction of (SOCS)-3 that 
inhibits JAK-STAT signaling.7,9 Ablation of SOCS3 
neurons enhances leptin action, resulting in STAT3 
activation, an increase in hypothalamic POMC 
expression, and reduction in food intake and weight.7,27 
Protein-tyrosine phosphatase-1B, which is well known 
to terminate insulin action, also inhibits leptin signaling 
through inactivation of JAK2. The protein tyrosine 
phosphatase-1B deficient mice exhibits greater leptin 
sensitivity, increased hypothalamic STAT3 
phosphorylation, and resistance to obesity.7,28 Adenosine 
monophosphate (AMP)-activated protein kinase is 
another leptin target.41 Adenosine monophosphate 
kinase (AMPK) is phosphorylated and activated in 
response to energy deficit during fasting or cellular 
stress, leading to stimulation of fatty acid oxidation. 
Hypothalamic AMPK phosphorylation and activity are 
increased by fasting and decreased by leptin, insulin, 
and various anorectics. Leptin inhibits the 
phosphorylation and activation of AMPK in the 
hypothalamus, leading to appetite suppression.7,42 
Leptin improves insulin sensitivity through activation 

of AMPK, which controls cellular concentrations of 
malonyl-CoA. In the presence of leptin, AMPK is 
activated and acetyl-CoA carboxylase enzyme is 
inhibited, and the conversion of acetyl-CoA to 
malonyl-CoA is inhibited, therefore, malonyl-CoA 
level falls, fatty acid oxidation increases, and the lipid 
content decreases.43,44 On appetite, leptin depolarizes 
hypothalamic POMC neurons and decreases the 
inhibitory tone of γ-amino butyric acid.44 Conversely, 
leptin hyperpolarizes and inactivates NPY neurons in 
the arcuate nucleus.45,46 The fall in leptin during fasting 
increases the action potential frequency in NPY 
neurons, and this correlates with hyperphagia.46,47 On 
the other hand, leptin hyperpolarizes glucose-responsive 
neurons in the hypothalamus, an effect that has been 
linked to appetite suppression and weight loss.7,48 

Leptin plays a dual role in energy homeostasis. During 
fasting, the fall in leptin signals to the brain, leading to 
hyperphagia, reduced energy expenditure, and 
suppression of thyroid, reproduction and growth 
hormones, and the immune system.49,50 Furthermore, 
fasting-induced hypoleptinemia increases NPY and 
AGRP and reduce POMC neurons in the 
hypothalamus.10,51 In agreement, previous studies10,52 
denote that leptin deficiency induces hyperphagia and 
changes in neuroendocrine and immune function 
during fasting. Leptin seems to control hepatic glucose 
production through a central melanocortin-dependent 
pathway that stimulates gluconeogenesis and a 
melanocortin-independent pathway that inhibits 
glucose production and glycogenolysis. Administration 
of leptin by intravenous and intra-cerebroventricular 
infusion enhances peripheral insulin action.53-56 Acute 
leptin infusion in the cerebral ventricle stimulates 
gluconeogenesis with a compensatory decrease in 
glycogenolysis, so it does not affect glucose 
production.57 Gutierrez-Juarez et al58 found that 
blockade of the central melanocortin pathway prevents 
the effects of leptin on glucose production. These 
previous data establish the crucial role of leptin in the 
CNS regulation of glucose metabolism that may relate 
to the pathogenesis of insulin resistance and type 2 
diabetes associated with obesity.7,59 The administration 
of recombinant leptin is performed intravenously, 
intra-muscularly, intraperitoneal, and through other 
parenteral routes to treat obesity and diabetes. Leptin 
injections evoke weight loss by causing a reduction in 
food consumption and an increase in energy 
expenditure.60 Oosman et al60 recently introduced the 
concept of transplanting gut-derived cells that are 
engineered to produce leptin, under the regulation of 
an inducing agent, mifepristone among obese, diabetic 
ob/ob mice and to mice fed on a high-fat diet. They 
found out that transplantation of these cells offers a 
therapeutic effect in leptin-deficient mice alone.
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Adiponectin. Adiponectin is a 30-kDa collagen-like 
protein, clinically noted to be anti-atherogenic and anti-
diabetic at elevated levels.61 It is an adipocyte-secreted 
protein of 247 amino acids, produced exclusively by 
adipocytes. Adiponectin contains an N-terminal signal 
sequence, a variable domain, a collagen like (tail) 
domain, and C-terminal globular (head) domain.7,62 
The structure of the globular domain resembles 
TNF-α.63 In the circulation, adiponectin exists in 2 
forms, a low molecular weight (LMW) oligomer, and 
as high molecular weight (HMW).63,64 The potency of 
adiponectin has been linked to the HMW complex.7,65 
The adiponectin protein can undergo proteolytic 
cleavage leading to the formation of the globular 
form of adiponectin containing only the globular 
head domain.66 The globular form of adiponectin 
stimulates β-oxidation of fatty acids in skeletal muscle, 
whereas the full-length adiponectin decreases hepatic 
glucose output.10,66-68 Adiponectin is abundant in the 
circulation with remarkably high concentrations in 
human blood (approximately 10 µg/ml), accounting 
for 0.01% of total serum protein.69 Males have 
significantly lower plasma adiponectin than females.70,71 
This gender difference between women and men is due 
to the inhibitory effect of androgens on adiponectin.72 
Reduced adiponectin levels have been associated with 
insulin resistance, dyslipidemia, and atherosclerosis in 
humans and rodents,63 in patients with cardiovascular 
disease,73 and diabetes.74 Epidemiological studies 
showed that low levels of adiponectin are a predictor 
of the later development of type 2 diabetes,75,76 and 
myocardial infarction.77,78 The AdipoR1 and AdipoR2 
are the receptors of adiponectin, with AdipoR1 being 
expressed in muscle tissues as a high-affinity receptor 
for globular adiponectin and low affinity for full-length 
adiponectin, whereas AdipoR2 is abundantly found 
in the liver and serves as an intermediate-affinity 
receptor for both forms of adiponectin. The function of 
adiponectin in various glycemic and lipid processes can 
be explained by activation of AMPK and stimulation 
of peroxisome proliferator-activated receptor (PPAR)  
alpha, which leads to increased glucose uptake and 
oxidation of fatty acids in skeletal muscle and decreased 
hepatic glucose output.79 Although studies have failed 
to demonstrate a blood-brain transport of adiponectin, 
both AdipoR1 and AdipoR2 are distributed widely in 
the brain.80 Injection of adiponectin into the fourth 
ventricle depolarized AdipoR1 and AdipoR2-positive 
neurons in the area of postrema, suggesting a potential 
mechanism for its central adiponectin action.7,81 The 
Adipo R1 was shown to interact with the insulin 
receptor, thereby enhancing insulin signal transduction, 
and by this mechanism adiponectin could ameliorate 
insulin resistance. Adiponectin treatment enhances 

insulin sensitivity, primarily by suppressing glucose 
production.10,68,82,83 Targeted disruption of AdipoR1 
prevented adiponectin-induced AMPK activation, 
whereas disruption of AdipoR2 decreased PPAR-α 
activity.84 Disruption of both Adipor1 and AdipoR2 
abolished adiponectin binding and induced steatosis, 
inflammation, oxidative stress, insulin resistance, and 
glucose intolerance.10,84 In skeletal muscle, adiponectin 
increases expression of molecules involved in fatty-
acid transport such as CD36, in combustion of fatty 
acids such as acyl-coenzyme A oxidase, and in energy 
dissipation such as uncoupling protein 2, leading to 
decreased triglyceride contents.85 On the vascular system, 
adiponectin has implicated activation of AMPK and 
inhibition of nuclear factor κB (NF-κB) and vascular 
adhesion molecules. Adiponectin also exerts a protective 
action in myocardial remodeling in response to acute 
ischemia-reperfusion.10,86 Adiponectin deficient mice had 
increase myocardial apoptosis and infarct size than wild-
type. Importantly, adiponectin treatment diminished 
infarct size, apoptosis and TNF-α production in both 
knockout and wild-type mice.  These actions appear to be 
mediated through activation of AMPK, and induction of 
cyclooxygenase-2-dependent synthesis of prostaglandin 
E2.10,86 Plasma adiponectin levels are found to be lower 
in obese subjects than in lean subjects, and strong 
negative correlations between plasma adiponectin levels 
and body mass index have been shown both in humans 
and in animals.70,71,87 In accordance with these findings, 
the adiponectin mRNA levels are also lower in adipose 
tissue from obese as compared with lean subjects.88,89 
In addition, adiponectin gene expression and protein 
levels are higher in subcutaneous than in intra-
abdominal adipose tissue.89,90 Adiponectin is  markedly 
reduced in obesity and rises with prolonged fasting and 
severe weight reduction.10,82,83 Peripheral adiponectin 
treatment decreases body weight, specifically fat, by 
increasing the stimulating oxidation of fatty acids.7,91 
Adiponectin potentiated the central effects of leptin 
to increase thermogenesis and fatty acid oxidation 
and reduce glucose and lipids in Lep ob/ob mice.92 In 
contrast, dominant agouti (Ay/a) mice failed to respond 
to both leptin and adiponectin, implying a common 
involvement of melanocortin receptors.92 Recent 
reports showed that in prostate cancer, adiponectin 
was observed to be higher in locally advanced relative 
to organ-confined prostate cancer, and may thus serve 
as an auxiliary marker providing further improvement 
to PSA (prostate-specific antigen) for discrimination 
between different stages of prostatic cancer.93

Resistin. Resistin belongs to a family of cysteine-
rich C-terminal domain proteins called resistin-like 
molecules (RELMs). There are 4 members in the 
mouse RELMs family: resistin, RELMα, RELMβ, 
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and RELMγ. Only 2 counterparts were found in 
humans, resistin and RELMβ.94 The mouse resistin 
gene is localized to chromosome 8 and the human 
resistin gene to chromosome 19.94 Mouse resistin is 
almost exclusively expressed in white adipose tissue 
with high levels, whereas human resistin is expressed 
with low levels in the adipose tissue and expressed 
with high levels in bone marrow followed by the 
lung.94 Additionally, human resistin has been detected 
in placental tissue,95 and pancreatic islet cells,96 
although resistin gene expression is largely confined to 
macrophages.94,97 Studies in rodents suggest that resistin 
inhibits the phosphorylation and activation of AMPK, 
and induces SOCS3 production.98-100 Unlike rodents, 
where resistin is produced exclusively by adipocytes, 
human resistin is secreted by mononuclear cells and 
activated by macrophages.10,97 The role of resistin in 
glucose homeostasis in humans remains controversial.101 

Resistin has been associated with insulin resistance 
and obesity in some studies, but others have failed to 
establish such a relationship.102-106 A connection between 
resistin, inflammation, and atherogenesis has been 
reported.10,107-109 The role of resistin in the development 
of inflammation and its relationship with adipokines 
remains unknown. Previous works showed a correlation 
between resistin and inflammatory markers.109-112 Kaser 
et al112 demonstrated that in human mononuclear 
cells, resistin mRNA expression is regulated by pro-
inflammatory cytokines such as IL1, IL6, and TNFα. 
This association signifies the relationship between 
resistin and inflammation.112 Other investigators have 
demonstrated a strong correlation between resistin and 
plasma levels of sTNFR2 in diabetic patients.113,114 
Human studies of the association between resistin 
and inflammation has shown increased serum levels 
of resistin in acute inflammatory processes.115,116 These 
results support the suggestion that resistin may play 
an inflammatory rather than a metabolic function 
in humans.117,118 In humans, hyper-resistinemia  is 
indirectly regulated by an inflammatory process 
accompanying the obesity. Therefore, resistin seems to 
be a possible mediator of insulin resistance in humans 
with acute inflammation.114 Resistin antagonizes insulin 
action both in vivo and in vitro. Resistin concentrations 
were higher in obese and diabetic mice. Administration 
of resistin increased plasma glucose levels and stimulated 
endogenous glucose production in rodents.117,119 The 
deficiency of resistin decreases hepatic gluconeogenesis 
and glucose levels.117,120

Visfatin. Visfatin is a secretory protein highly 
enriched in rodent and human visceral adipocytes; and 
is also expressed by liver, muscle, bone marrow, and 
lymphocytes, where it was first identified as pre-B-cell 
colony stimulating factor.121 Initial study described 

an increase in adipose and circulating visfatin in 
obesity, and this was related to preservation of insulin 
sensitivity.121 Visfatin appeared to exert an insulin-
mimetic effect in adipocytes, and hepatocytes following 
systemic administration in the mice.10,121 Visfatin shows 
similarity to insulin in vitro, it enhances glucose uptake 
by myocytes and adipocytes and inhibited hepatocyte 
glucose release.121 In addition, visfatin amplifies 
adipocyte differentiation. Its insulin-like effects are also 
observed in the insulin-transduction pathway, as this 
hormone induces tyrosine phosphorylation of insulin 
receptors IRS-1 and 2, and activation of phosphatidyl 
inositol-3 kinase, protein kinase B, and MAP kinase. 
Also, visfatin and insulin have the same affinity for the 
insulin receptor, with visfatin physically interacting with 
the receptor, but at a different site. Despite this similarity 
between visfatin and insulin, there are also important 
differences.121 Visfatin levels do not significantly change 
in fed or fasting states. Plasma levels of visfatin are 
lower, 10% of insulin levels in a fasting state and 3% in 
a fed state. These differences in plasma concentrations 
could account for the mild effect of visfatin in glycemia.  
Although it is too early to consider visfatin in the 
development of hypoglycemic drugs, recent research 
has shown that serum visfatin increases with progressive 
beta-cell deterioration in type 2 diabetic patients.122 
Intravenous infusion of visfatin in normal rats leads to an 
acute fall in glucose, independent of insulin secretion.121 
Visfatin-deficient animals (–/–) are not compatible 
with life.  Heterozygous animals (visfatin +/–) have 
two-thirds lower visfatin blood levels than wild-type 
mice. On the other hand, growth rate, total body 
weight, food intake, and brown fat levels in muscle and 
heart are no different from wild-type mice.121 Indeed, 
in adipose tissue, visfatin is preferentially expressed 
by macrophages rather than mature adipocytes.123 

Visfatin was originally identified as a pre-B-cell colony-
enhancing factor (PBEF) that acts as growth factor for 
early-state B cells, it is also expressed in neutrophils 
from critically ill patients with sepsis in whom rates 
of apoptosis are profoundly delayed.124,125 So visfatin 
acts as recombinant PBEF, which exerts anti-apoptotic 
effects through inhibition of caspases-3 and -8. It can 
be considered as an inflammatory cytokine that plays an 
essential role in delayed neutrophil apoptosis in clinical 
and experimental sepsis.125,126 It could also represent 
a useful biomarker in acute lung injury,127 and is also 
highly expressed in carotid plaques from symptomatic 
individuals within lipid-rich macrophages.128 There 
is also a relationship between visfatin and unstable 
lesions in patients with coronary heart disease, and it 
can increase matrix metalloproteinase-9 activity in 
monocytes, and TNF-α and IL-8 in peripheral blood 
mononuclear cells.128 

In conclusion, this review highlights the notion that 
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the adipose tissue has complex interactions with the 
brain and peripheral organs via adipokines.  Leptin and 
various adipokines have paracrine autocrine actions, 
which serve to modulate adipogenesis, glucose, and lipid 
metabolism, immune and neuroendocrine functions. 
Leptin biology in normal individuals and its role in 
obesity related disorders and how it reach its targets, its 
receptors, its effects on feeding, lipids, and hormonal 
regulation, and whether leptin resistance play a role in 
obesity are clarified in this article. It is leptin resistance 
and not leptin deficiency per se, which is regarded as 
a pathogenic mechanism in human obesity. Among its 
vital functions, leptin acts via hypothalamic receptors 
to inhibit feeding and increase thermogenesis, resulting 
in a decreased body weight. Evidence also suggests that 
leptin has an inhibitory role on insulin secretion. The 
above-mentioned findings are just a fraction of how 
leptin influences  body metabolism, making it a very 
promising target for therapeutic interventions for a 
multiple of metabolic diseases. This article also provides 
a framework for understanding how adiponectin  helps 
to reduce body weight and to resist obesity, also it could 
be used as a marker for cancer prostate. The article 
highlights that in humans, resistin is indirectly regulated 
by the inflammatory process accompanying obesity, 
it antagonizes insulin action both in vivo and in vitro. 
Therefore, resistin seems to be a possible mediator of 
insulin resistance in humans with acute inflammation. 
Also, the article illustrates that visfatin shows similarity 
to insulin and it amplifies adipocyte differentiation. 
Serum visfatin increases with progressive beta-cell 
deterioration in type 2 diabetic patients, it has a pre-B-
cell colony-enhancing factor (PBEF) that acts as a growth 
factor for early-state B cells, and  exerts anti-apoptotic 
effects through inhibition of caspases-3 and -8, it is an 
inflammatory cytokine that plays an essential role in 
delayed neutrophil apoptosis in clinical sepsis. It could 
also represent a useful biomarker in acute lung injury, 
and there is also a relationship between visfatin and 
unstable lesions in patients with coronary heart disease. 
Understanding the signaling pathways of adipokines 
and their targets in the brain and peripheral organs 
will benefit the treatment of obesity and associated 
metabolic diseases. Collectively, the results of studies 
cited herein delineate the basis of adipokines physiology 
and pathophysiology of obesity related diseases.
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