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ABSTRACT

الأهداف: تحديد العلامات التشخيصية المحتملة لسرطان الرئة ذو الخلايا الصغيرة 
)SCLC( والتحقيق في العلاقة مع تسلل الخلايا المناعية. 

المنهجية: تم استخدام GSE149507 وGSE6044 كمجموعة تدريب، بينما 
بمثابة مجموعة   GSE73160و  A التحقق  بمثابة مجموعة   GSE108055 كان 
من  وتحليلها   )DEGs( تفاضليًا  عنها  المعبر  الجينات  بتحديد  قمنا   .B التحقق 
أجل الإثراء الوظيفي. استخدمنا )ML( لتحديد الجينات التشخيصية المرشحة لـ 
SCLC. قمنا بتطبيق المنطقة الواقعة تحت منحنيات التشغيل المميزة للمستقبل 

لتقييم فعالية التشخيص. وأجريت تحليلات تسلل الخلايا المناعية. 

 DEGs أظهر تحليل علم الجينات أنه تم إثراء .DEGs 181 النتائج: تم تحديد
بـ 455 تعليقًا وظيفيًا، بعضها مرتبط بالمناعة. كشفت موسوعة كيوتو للجينات 
وتحليل الجينوم عن وجود 9 مسارات إشارات غنية. أشار تحليل وجود المرض إلى أن 
DEGs كانت مرتبطة بـ 116 مرضًا. عرضت نتائج تحليل إثراء مجموعة الجينات 
 NRCAMو ZWINT عناصر متعددة مرتبطة ارتباطًا وثيقًا بالحصانة. تم فحص
لوحظت  وقد  تشخيصية.  كجينات  صحتها  من  التحقق  وتم   ML باستخدام 
اختلافات كبيرة في SCLC مع عينات أنسجة الرئة الطبيعية بين خصائص تسلل 
الخلايا  وتسلل  التشخيصية  الجينات  بين  قوية  ارتباطات  وجدنا  المناعية.  الخلايا 

المناعية. 

 ،NRCAMو  ZWINT جينين،  وشخصت  الدراسة  هذه  حددت  الخلاصة: 
الحيوية  المعلوماتية  تحليل  دمج  خلال  من  المناعية  الخلايا  بتسلل  مرتبطتين 
وخوارزميات ML. يمكن أن تكون هذه الجينات بمثابة مؤشرات حيوية تشخيصية 

.SCLC محتملة وتوفر أهدافًا جزيئية محتملة للعلاج المناعي في

Objectives: To identify potential diagnostic markers 
for small cell lung cancer (SCLC) and investigate the 
correlation with immune cell infiltration.

Methods: GSE149507 and GSE6044 were used as the 
training group, while GSE108055 served as validation 
group A and GSE73160 served as validation group B. 
Differentially expressed genes (DEGs) were identified 
and analyzed for functional enrichment. Machine 
learning (ML) was used to identify candidate diagnostic 
genes for SCLC. The area under the receiver operating 
characteristic curves was applied to assess diagnostic 
efficacy. Immune cell infiltration analyses were carried out.

Original Article

Results: There were 181 DEGs identified. The gene 
ontology analysis showed that DEGs were enriched 
in 455 functional annotations, some of which were 
associated with immunity. The kyoto encyclopedia of 
genes and genomes analysis revealed that there were 
9 signaling pathways enriched. The disease ontology 
analysis indicated that DEGs were related to 116 diseases. 
The gene set enrichment analysis results displayed 
multiple items closely related to immunity. ZWINT and 
NRCAM were screened using ML and further validated as 
diagnostic genes. Significant differences were observed in 
SCLC with normal lung tissue samples among immune 
cell infiltration characteristics. Strong associations were 
found between the diagnostic genes and immune cell 
infiltration.

Conclusion: This study identified 2 diagnostic genes, 
ZWINT and NRCAM, that were related to immune cell 
infiltration by integrating bioinformatics analysis and 
ML algorithms. These genes could serve as potential 
diagnostic biomarkers and provide possible molecular 
targets for immunotherapy in SCLC.

Keywords: small cell lung cancer, diagnostic genes, 
bioinformatics analysis, machine learning, immune cell 
infiltration
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Lung cancer is a prevalent malignancy and a 
significant contributor to cancer-related mortality 

on a global scale. The prevalence and fatality rates 
are high, especially in China.1,2 Based on its biology, 
therapy, and prognosis, lung cancer comprises 2 main 
types: small cell lung cancer (SCLC) and non-small 
cell lung cancer (NSCLC). Approximately 70% of 
lung cancer cases diagnoses occur at an advanced stage, 
rendering them inoperable. Distinguishing SCLC 
from NSCLC begins with morphological analysis 
supported by immunohistochemistry, followed by 
molecular techniques.3 Small cell lung cancer is an 
invasive neuroendocrine carcinoma that accounts 
for approximately 15% of all lung cancer cases. At 
the time of diagnosis, more than 70% of SCLC cases 
have already metastasized. Furthermore, the 5-year 
survival rate of patients with metastases is less than 
1%.4-6 Although SCLC patients initially respond well 
to first-line treatment, most experience recurrence, and 
few therapeutic advancements have been carried out 
over the last 3 decades. Hence, SCLC is considered 
a recalcitrant cancer.7 Therefore, finding new and 
probable diagnostic markers is vital for the diagnosis 
and therapy of SCLC.

Using biotechnology and immunological methods, 
immunotherapy is a novel modality to boost targeted 
immune responses against cancers and stimulate 
the body’s immune system to selectively eliminate 
cancerous cells. This immunostimulatory ability extends 
beyond primary tumors and demonstrates a remarkable 
ability to combat metastatic tumors.8-10 The tumor 
microenvironment (TME) is primarily composed of 
stromal cells, immune cells, and extracellular matrix, 
and changes in these components produce several 
physiologically distinct and specialized TME, the main 
cancer immunotherapy ways targeting the immune 
components of TME contain the use of adoptive-T 
lymphocytes, CAR-based therapies, cancer vaccines and 
immune checkpoint inhibitors.11 A substantial body of 
evidence suggests that intratumor heterogeneity (ITH) 
along with the interactions within the TME, plays a 
crucial role in various aspects of tumor biology and 
therapeutic responses.12 For instance, the diverse states of 
T-cells in SCLC can offer potential immunotherapeutic 
targets and indicate that specific patients who respond 
to immunotherapy have more substantial benefits.13 

Due to the diversity of cancers and variations in each 
individual’s immune system, immunotherapy may not 
produce favorable treatment outcomes for everyone. 
In contrast to highly immunogenic cancers, SCLC 
has fallen behind in the field of immunotherapy in the 
past decade. However, recent advancements in cancer 
immunotherapy research offer new hope for patients 
with SCLC, potentially providing them with better 
and more sustainable survival opportunities despite 
numerous unresolved challenges.6,14

Machine learning (ML) is a branch of artificial 
intelligence that concentrates on employing 
mathematical algorithms to detect patterns in data for 
the purpose of making predictions.15 Machine learning-
based methods play an important role in integrating 
and analyzing the extensive and complicated datasets 
and are increasingly applied in clinical oncology to 
diagnose cancers, predict patient prognosis, and provide 
information for treatment plans.16,17 The development 
of bioinformatics has a long time, with the purpose of 
utilizing information science and statistical methods 
to understand biological phenomena.18 It has been 
widely used for comparative genomic, transcriptomic, 
and bacterial microbiome analysis in sequencing, 
animal cell biology, and plant physiology in imaging.19 
Therefore, it is particularly important to apply ML and 
bioinformatics methods to identify diagnostic genes 
and immune cell infiltration characteristics of SCLC, 
which providing potential biomarkers for diagnosis of 
SCLC and searching for possible molecular targets for 
immunotherapy.

Methods. Datasets GSE149507, GSE108055, 
GSE73160, and GSE6044 were downloaded from 
the gene expression omnibus (GEO) database. The 
GSE149507 dataset was generated using the GPL23270, 
consisting of 18 SCLC and 18 adjacent lung tissues. 
The platform for GSE108055 was GPL13376, which 
included 12 SCLC tissue samples and 10 adjacent 
normal lung tissue samples. The platform for GSE73160 
was GPL11028, which contained most of the SCLC 
cell lines. The GSE6044 platform was GPL201 and 
contained 9 SCLC tissues and 5 normal lung tissues. 
Each dataset was normalized using the normalize 
between arrays function in the limma R package, and 
all gene expression data were log2 transformed. The 
GSE149507 and GSE6044 datasets were merged, and 
the batch effect was removed to serve as the training 
group. The GSE108055 served as validation group A, 
whereas GSE73160 served as validation group B.

The limma package of R served as a filter for 
differentially expressed genes (DEGs) in SCLC with 

Disclosure. This study was supported by the Key Science 
and Technology Research Project of Jiangxi Provincial 
Education Department, Jiangxi, China (GJJ220C119).
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normal lung tissues among the training group. Genes 
with a corrected p-value of <0.05 and |log fold change 
(FC)| >2 were regarded as DEGs. The pheatmap R 
package was employed to generate the heatmap of 
DEGs, while the ggplot2 and ggrepel R packages were 
used for creating the volcano plot.

The functional enrichment analysis of DEGs was 
carried out using the ggplot2, enrichplot, org.Hs.eg.
db, clusterProfiler, and DOSE R packages, which 
included gene ontology (GO), kyoto encyclopedia of 
genes and genomes (KEGG), and disease ontology 
(DO) analyses, with the setting of p-valueFilter=0.05 
and q-valueFilter=0.05 (corrected p-value) as filtrating 
conditions. Additionally, gene set enrichment analysis 
(GSEA) of functions and pathways between SCLC and 
normal lung tissues in the training group was carried 
out using the gene sets c5.go.v7.4. symbols.gmt, and 
c2.cp.kegg.v7.4. symbols.gmt.

Least absolute shrinkage and selection operator 
(LASSO) and support vector machine-recursive feature 
elimination (SVM-RFE) methods were applied for 
identifying candidate diagnostic genes from DEGs. 
The LASSO algorithm is recognized as a compressive 
estimation model that can eliminate insignificant 
variables by implementing a penalty function, thereby 
compelling the compression of multiple regression 
coefficients. Serving the maximum interval principle 
of support vector machines as base, the SVM-RFE 
algorithm is a sequential backward selection method 
which adheres to the principle of structural risk 
minimization while also aiming to minimize empirical 
errors. The LASSO model was constructed by the use 
of the glmnet R package. Genes corresponding to this 
point were selected, with the minimum cross-validation 
error. The e1071, kernlab, and caret packages in R were 
applied to construct the SVM-RFE algorithm. The 
intersecting genes identified using the Venn R package 
were considered candidate diagnostic genes.

In validation group A, the ggpubr R package was 
applied for validating the variance in expression of 
candidate diagnostic genes in SCLC with normal lung 
tissues. Receiver operating characteristic (ROC) curves 
were employed to evaluate the predictive effectiveness 
of the candidate genes in both the training group 
and validation group A. Furthermore, the differential 
expression of potential biomarkers was analyzed 
between 64 SCLC and 2 normal lung cell lines in 
validation group B. The stat_compare_means function 
was used for the statistical analysis.

The expression of candidate diagnostic genes was 
further verified using quantitative real-time polymerase 
chain reaction (qRT-PCR) in BEAS-2B, SCLC 

NCI-H446, and NCI-H69 cell lines, which were 
acquired from ATCC (Wuhan, China). The BEAS-2B 
cell line was cultivated in Dulbecco’s modified Eagle’s 
medium (DMEM) high-glucose medium (Invitrogen) 
containing 10% fetal bovine serum (FBS; Invitrogen), 
and the NCI-H446 and NCI-H69 cell lines were 
cultivated in RPMI1640 medium (Invitrogen) with 
10% FBS. All the cell lines were maintained in an 
incubator at 37°C and 5% CO2. The total RNA 
of BEAS-2B, NCI-H446, and NCI-H69 cells was 
extracted with the TRIzol reagent (Invitrogen). The 
RNA from these cell lines was transcribed into cDNA by 
the use of the PrimeScript™RT Reagent Kit with gDNA 
Eraser (Takara, Japan). The thermocycling protocol 
involved initial denaturation at 95°C for 30 seconds, 
then 40 cycles at 95°C for 5 seconds, and 60°C for 30 
seconds. Primer sequences applied were as follows: 

GAPDH (forward) - 5’-AGAAGGCTGGGGCTCATTTG-3’ 
and GAPDH (reverse) - 5’-AGGGGCCATCCACAGTCTTC-3'; 
ZWINT (forward) - 5’-GGAGGAAGCCCAGAGGAAAC-3’ 
and ZWINT (reverse) - 5’-CTGTCTTACGCTCCCTCACC-3’; 
NRCAM (forward) - 5’-GAGCGAAGGGAAAGCTGAGA-3’ and 
NRCAM (reverse) - 5’-ACAATGGTGATCTGGATGGGC-3’. 
The primers were synthesized by Shanghai Dingguo 
Biotechnology.

Immune infiltration analysis. The levels of 
immunocyte infiltration in SCLC tissues with normal 
lung tissues among the training group were carried out 
by the use of the cell type identification by estimating 
relative subsets of RNA transcripts (CIBERSORT) 
package in R, which determines the infiltration of 22 
immune cell types for each sample in the training group. 
The OmicStudio tool was used to generate a correlation 
heatmap of different immune cell infiltrations. A level 
of p<0.05 was established to determine statistical 
significance. 

Further analysis of the correlation in diagnostic 
genes with different infiltrating immune cells among 
the training group was carried out using the reshape2, 
ggpubr, and ggextra packages in R, employing 
Spearman’s rank correlation.

Results. In total, there were 181 DEGs identified, 
with 119 genes showing upregulation and 62 genes 
showing downregulation. The results are presented, 
including a clustering heatmap displaying the top 100 
genes (Figures 1A&B).

The analysis of GO encompassed 3 components: 
biological processes (BP), cellular components (CC), 
and molecular functions (MF). There were 388 BP, 
48 CC, and 19 MF enriched in the GO analysis, and 
the top 10 items were shown (Figure 1C). The DEGs 
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Figure 1 -	Differentially expressed genes (DEGs) between the 2 groups of samples and functional enrichment analyses of them. A) 
Clustering heatmap of the top 100 DEGs in the training group (red represents relative upregulation, and blue represents relative 
downregulation of gene expression). B) Volcano plot of DEGs in SCLC tissues with normal lung tissues in the training group (red 
dots for upregulated genes and green dots for downregulated genes with an adjusted p<0.05 and |log fold change| >2). C) Gene 
ontology enrichment analysis of functions in the training group. D) Kyoto encyclopedia of genes and genomes enrichment analysis 
of pathways in the training group. E) Disease ontology enrichment analysis of the training group.
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were primarily enriched in BP related to immunity. 
These processes include leukocyte chemotaxis, myeloid 
leukocyte migration, and an antimicrobial humoral 
response. They are also involved in the antimicrobial 
humoral immune response mediated by antimicrobial 
peptides, cell chemotaxis, and granulocyte chemotaxis. 
Additional processes encompass the humoral immune 
response, defense response to bacteria, and neutrophil 
chemotaxis. Myeloid leukocyte-mediated immunity, 
neutrophil migration, and defense responses to fungi 
were also included. Further processes involve myeloid 
cell activation in the immune response, antibacterial 
humoral response, mast cell activation, and myeloid 
leukocyte activation. There were 9 signaling pathways 
enriched in KEGG analysis of DEGs (Figure 1D). 

The DO analysis indicated that DEGs were related to 
116 diseases (Figure 1E).

The functional outcomes of GSEA between SCLC 
tissues and normal lung tissues among the training group 
showed that multiple items were related to immunity 
(Figures 2A&B). The GSEA results showed that several 
pathways were also closely associated with immunity, 
including complement and coagulation cascades, 
graft versus host disease, and allograft rejection, etc. 
(Figures 2C&D).

A total of 10 diagnosis-associated genes were 
identified using the LASSO model: ZWINT, TYMS, 
PCP4, NRCAM, SOX4, PLA2G1B, CST6, SCGN, 
PPBP, and CXCL13 (Figure 3A). Four diagnosis-
associated genes, RFC4, NRCAM, EZH2, and ZWINT, 

Figure 2 -	Gene set enrichment analysis (GSEA) of functions and pathways in the training group. The top 5 functions of GSEA in: A) normal lung tissues 
and B) small cell lung cancer (SCLC) tissues, and the top 5 pathways of GSEA in: C) normal lung tissues and D) SCLC tissues.
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were identified from DEGs by the use of the SVM-RFE 
method (Figure 3B). The intersecting section were 
ZWINT and NRCAM as candidate diagnostic genes 
(Figure 3C).

In validation group A, the levels of ZWINT and 
NRCAM expression were found to be significantly 
elevated in SCLC tissues compared to normal lung 
tissues (Figures 4A&B). The area under the ROC 
curve (AUC) value for ZWINT in the training group 
was determined to be 1.000 and the AUC value for 
NRCAM in the training group was determined to be 
0.998 (Figures 4C&D). The AUC values were 1.000 
and 0.875 in validation group A (Figures 4E&F). The 

results indicated that all values were greater than 0.80, 
demonstrating a high predictive accuracy and diagnostic 
efficacy. Additionally, compared to normal lung cell 
lines in validation group B, the levels of ZWINT and 
NRCAM expression were higher in SCLC cell lines 
(Figures 5A&B).

Using the BEAS-2B cell line as a control, the relative 
expression of ZWINT and NRCAM in the 2 SCLC 
cell lines (NCI-H446 and NCI-H69) was analyzed. 
Compared to the BEAS-2B cell line, the qRT-PCR 
outcomes revealed that ZWINT and NRCAM were 
upregulated among these 2 SCLC cell lines. These 
differences have statistical significance (p<0.05). The 

Figure 3 -	 Identification of candidate diagnostic genes. A) Least absolute shrinkage and selection operator regression plot (the X-axis is logλ, and the Y-axis 
is the cross-validation error). B) Support vector machine-recursive feature elimination algorithm (the X-axis represents a change in the number 
of genes, and the Y-axis represents a cross-validation error). C) Venn diagram (intersection of genes using 2 machine learning methods). LASSO: 
least absolute shrinkage and selection operator, SVM-RFE: support vector machine-recursive feature elimination, RMSE: root mean squared 
error
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detailed results are presented (Figures 5C&D). Based on 
these results, ZWINT and NRCAM were identified as 
diagnostic genes.

The percentage of 22 different immunocyte 
infiltrations of each sample was diverse in the training 
group (Figure 6A). Further analysis revealed that the 
levels of 11 immune cell infiltrations in SCLC tissues 
and normal lung tissues were statistically different 
among the training group (Figure 6B). Compared to 
normal lung tissues, the SCLC tissues showed elevated 
levels of M1 macrophages, and resting dendritic cells, 
etc, whereas lower levels of monocytes, activated 
dendritic cells, and neutrophils, etc. Correlation 
analysis between different immunocytes (Figure 6C) 
indicated that neutrophils were positively related to 
monocytes (r=0.70), eosinophils (r=0.32), and activated 
mast cells (r=0.31), and more, while negatively related 
to follicular helper T-cells (r= -0.67), M1 macrophages 

(r= -0.66), and plasma cells (r= -0.33), and more. The 
M1 macrophages were positively related to resting 
dendritic cells (r=0.57), and plasma cells (r=0.39), 
and more, and negatively correlated with monocytes 
(r= -0.68), and resting mast cells (r= -0.31), and more. 
The above results all have statistical differences. These 
findings cumulatively indicate that the immunocyte 
infiltration features of SCLC and normal lung tissue are 
different and reveal intricate associations among various 
immune cell infiltrations within the TME.

Correlation analysis revealed that the level of ZWINT 
expression was positively related to macrophages 
M1 (r=0.74), and memory B-cells (r=0.34), and 
more. Conversely, it exhibited a negative correlation 
with neutrophils (r= -0.66), monocytes (r= -0.61), 
and eosinophils (r= -0.31), and more. The detailed 
outcomes are shown in Figure 6D. Furthermore, 
NRCAM expression levels were a positive association 

Figure 4 -	Evaluation of the candidate diagnostic genes. A&B) Box plots revealing the expression of ZWINT and NRCAM between small cell lung cancer 
tissues (treat) and normal lung tissues (con) in the validation group A (p<0.05 represents a significant difference). C&D) The receiver operating 
characteristic (ROC) curves of ZWINT and NRCAM in the training group. E&F) The ROC curves of ZWINT and NRCAM in the validation 
group A. AUC: area under the curve, CI: confidence interval
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with the infiltration level of macrophages M1 (r=0.58), 
and memory B-cells (r=0.36), and more. Conversely, 
it exhibited a negative correlation with neutrophils 
(r= -0.51), and monocytes (r= -0.51), and more. The 
above results all have statistical differences. The detailed 
outcomes were displayed in Figure 6E. These findings 
indicated a close association in diagnostic genes with 
immune infiltrating cells.

Discussion. Small cell lung cancer is considered 
the most malignant type of lung cancer, exhibiting 
a high rate of cell proliferation, rapid tumor growth, 
and early metastasis. Despite significant advancements 

in the number and efficacy of targeted therapies, there 
have been minimal changes in treatment plans and 
overall survival for SCLC, which continues to have 
a poor prognosis.20,21 Recently, immunotherapy has 
garnered significant attention in cancer treatment.22-24 
More and more researches are focusing on novel 
treatment strategies for SCLC, and progress has been 
carried out in uncovering its biological properties 
and microenvironment.25 The infiltration features of 
immunocyte in the TME are closely associated with 
the therapeutic effects.26-28 Despite the promising 
clinical benefits of immunotherapy in treating SCLC, 
numerous issues remain, and further research is required 

Figure 5 -	Further validation of the candidate diagnostic genes and relative expression of them. A) The differential expression of ZWINT and B) NRCAM 
between small cell lung cancer cell lines (treat) and normal lung cell lines (con) in the validation group B. C) Relative expression of ZWINT and 
D) NRCAM by quantitative real-time polymerase chain reaction in different cell lines. *P<0.05, **p<0.01, ***p<0.001, ****p<0.0001
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to clarify them.6 Therefore, in this study, DEGs were 
identified, and functional enrichment analysis was 
carried out using bioinformatics tools. The results 
revealed associations between both tumor and immune 
responses. The 2 candidate diagnostic genes (ZWINT 
and NRCAM) for SCLC were identified using LASSO 

and SVM-RFE methods. Then, the elevated expression 
levels of ZWINT and NRCAM were validated, and 
their high diagnostic efficacy was evaluated in both 
the training and validation groups. Moreover, their 
relatively high expression levels were carried out by 
qRT-PCR. Immune cell infiltration and correlation 

Figure 6 -	Analysis of immunocyte infiltration. A) The relative percentage of different immunocytes infiltration in each sample. B) Violin plot revealing the 
differences in each infiltrating immunocyte type between small cell lung cancer (SCLC) tissues and normal lung tissues. C) Correlation analysis 
between different immune cell infiltration levels. Correlation analysis of D) ZWINT and E) NRCAM with different immune infiltrating cells 
(the X-axis represents the correlation coefficient, and the Y-axis represents the immunocyte names). Con represents normal lung tissue, and treat 
represents SCLC tissue. A p-value of <0.05 indicates a significant difference.
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analyses indicated notable variances in the features of 
infiltrating immune cells, as well as strong connections 
in diagnostic genes with immune cell infiltration. 

This study identified 181 DEGs, with 
119 genes showing upregulation and 62 genes showing 
downregulation. The GO analysis indicated that DEGs 
enriched in BP were related to immunity. The results 
of DO analysis included cell type benign neoplasms, 
breast carcinomas, adenomas, autonomic nervous 
system neoplasms, neuroblastomas, and SCLC. The 
GSEA in function and pathway between SCLC tissues 
and normal lung tissues in the training group displayed 
that multiple items were related to immunity. These 
findings suggest that DEGs are associated with tumors 
and immunity.

The ML methods are commonly used in clinical 
decision-making.29 The LASSO regression and 
SVM-REF models are 2 common models in ML. 
Transcriptome sequencing data are usually high-
dimensional with many variables (gene expression levels) 
and samples (different cell types or disease states), and 
traditional linear regression methods cannot process 
these data efficiently. The LASSO regression is a new 
linear regression method that selects genes associated 
with a physiological phenomenon or a disease by 
minimizing the sum of absolute values, which can 
effectively handle high-dimensional data and select the 
most important genes for functional prediction.30 The 
LASSO is a commonly used method, and its clinical 
efficacy has been confirmed.31,32 The SVM-RFE is an 
ML method based on support vector machines, which 
can be utilized in bioinformatics to extract feature 
genes from the expression matrix of differential genes. 
Based on their setup of grouping variables, they can 
ultimately achieve the goal of identifying optimal 
variables through the feature vectors generated by the 
SVM. This ML method was applied for screening 
characteristic genes.33 The SVM-RFE model is also 
widely used to screen diagnostic markers for conditions 
such as tumors, cardiovascular diseases, and immune 
disorders.33-35 To identify potential diagnostic genes 
for SCLC, LASSO, and SVM-RFE algorithms were 
constructed, with 10 genes identified by the former and 
4 genes by the latter. The intersection region (ZWINT, 
NRCAM) was regarded as a candidate diagnostic gene. 
In validation group A, the expression levels of ZWINT 
and NRCAM were found to be significantly elevated in 
SCLC tissues compared to normal lung tissues. In the 
training group and validation group A, the AUC values 
suggested that they exhibited a higher predictive effect 
and diagnostic efficacy. In the validation group B, the 
SCLC cell lines exhibited elevated levels of ZWINT 

and NRCAM expression compared to normal lung cell 
lines. Additionally, compared to the BEAS-2B cell line, 
qRT-PCR outcomes showed that the levels of ZWINT 
and NRCAM expression were upregulated in these 
2 SCLC cell lines (p<0.05). Therefore, ZWINT and 
NRCAM were considered diagnostic genes.

Immune infiltration analysis was employed to 
characterize the composition of immune cells within 
the human microenvironment and to identify which 
specific immune cells play a crucial role in disease 
development. The CIBERSORT is widely used for 
this purpose because, among the various immune cell 
infiltration databases, it utilizes linear support vector 
regression for deconvolution analysis. This user-friendly 
method provides a comprehensive range of immune cell 
classes and covers 22 types.36 In this study, an analysis 
comparing immunocyte infiltration in SCLC with 
normal lung tissues revealed diverse proportions of 
various immune cells in each case. Additionally, notable 
variances in the infiltration levels of 11 immunocyte 
types between SCLC and normal lung tissues were 
observed in the training group. Immune cells are 
essential constituents of TME and have important roles 
in tumorigenesis, which may have tumor-antagonizing 
or tumor-promoting effects.37,38 The TME is a complex 
and diverse system, and the formation, progression, 
and metastasis of cancer are closely linked to the 
internal and external conditions surrounding the cancer 
cells.8 The heterogeneous malignant components of 
the TME may be linked to angiogenesis, nutrition/
blood supply, and tumor metastasis, highlighting the 
recurring characteristic of tumor cell heterogeneity in 
SCLC. Consequently, the heterogeneity of malignant 
cells reflects variations in the interactions among TME 
components, SCLC subtypes, and varied responses to 
drugs.13 The high ITH and intricate nature of cancer 
cells contribute to drug resistance, thereby posing 
significant challenges in cancer therapy.39 Correlation 
analysis between different immunocyte infiltrations 
indicated complicated interrelationships in the TME, 
and the outcomes were in consistent with the research 
of Zhong et al40 in lung cancer and normal tissues. These 
findings may provide new insights for immunotherapy 
of cancer.40 Correlation analysis of the diagnostic 
biomarkers with immunocyte infiltration indicated a 
close and comprehensive relationship between them, 
suggesting mutual interactions that impact the immune 
infiltration features of the TME. These findings are 
consistent with those of Xie et al41 in gastric cancer and 
normal tissues. The above results demonstrated notable 
disparities of immune cell infiltration characteristics in 
SCLC with normal lung tissues, revealing complicated 
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correlations between immune cells infiltration of TME. 
These differences could be associated with the prognosis 
and immunotherapy outcomes. 

The ZWINT was a crucial component of the 
centromere complex necessary for the mitotic spindle 
checkpoint, which is associated with centromere 
function, and it is significantly upregulated in 
breast cancer tissues, indicating a poor prognosis for 
patients.42 The ZWINT exhibits high expression in 
lung adenocarcinoma tissues and is associated with 
unfavorable prognosis in lung adenocarcinoma patients. 
The knockdown of ZWINT inhibits proliferation, 
migration, invasion, and colony formation in NCI 
H226 and A549 cells, which could become a new target 
for lung cancer therapy.43 Therefore, the high expression 
of ZWINT in SCLC could be associated with poor 
prognosis and therapy. The NRCAM is a member of the 
immunoglobulin superfamily, its expression is related 
to low-grade neuroblastoma in children and could play 
a part in the early development of neuroblastoma.44 
NRCAM is highly expressed in papillary thyroid cancer 
and may be a possible diagnostic marker and therapeutic 
target for this disease.45 Consequently, the elevated 
expression of NRCAM in SCLC may act as a diagnostic 
marker and have therapeutic implications.

ZWINT and NRCAM have significant potential in 
the diagnosis of SCLC. Therefore, the expression of 
these 2 proteins in the serum can be detected by ELISA. 
The expression levels of serum neuron specific enolase 
and progastrin-releasing peptide, which are currently 
common tumor markers for the diagnosis of SCLC, 
can be jointly detected, thus improving the diagnostic 
efficiency of SCLC, including early diagnosis, and 
decreasing the misdiagnosis rate. Furthermore, these 
2 proteins are highly expressed in SCLC tissues. They 
can be validated through a series of experiments, 
including cell, animal, and clinical studies, to identify 
potential molecular targets for SCLC treatment.

Study limitations. First, owing to the lack of 
prognostic information in the GEO database, a 
prognostic analysis of the 2 diagnostic genes could not 
be carried out. In future research, paraffin-embedded 
tissues from over 100 patients with SCLC will be 
collected at the hospital for immunohistochemical 
staining of these 2 proteins. These patients will be 
followed up to determine whether high expression 
levels of these proteins are associated with prognosis. 
Second, further analysis of the 2 diagnostic genes related 
to immune cell infiltration in SCLC subtypes was not 
carried out. Lastly, clinical samples from SCLC patients 
and controls were not collected for in-depth validation. 
Therefore, serum specimens from patients with SCLC, 

NSCLC, and benign lung nodules will be collected for 
ELISA to measure the expression of these 2 proteins. 
Diagnostic efficacy testing will be carried out to assess 
their potential as diagnostic markers. If the diagnostic 
efficacy is promising, a multicenter collection of serum 
specimens will be carried out for further validation, 
laying the groundwork for clinical application.

In conclusion, this study identified 2 diagnostic 
genes, ZWINT and NRCAM, which are correlated 
with immune cell infiltration through the integration 
of bioinformatics analysis and ML algorithms. These 
genes could serve as potential diagnostic biomarkers 
and offer possible molecular targets for immunotherapy 
in SCLC.
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