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Postresuscitation syndrome comprises 2 major 
components; inflammatory (postresuscitation 

disease) and postresuscitation hemodynamic changes. 
Both components predict the myocardial function, 
which in its turn will outline the outcome of the 
resuscitation effort. Twenty to forty percent of patients 
who sustained cardiac arrest are initially resuscitated 
but only 10% survive to hospital discharge.1,2  
Successful resuscitation is not a momentary event, 
and the long-term outcome should be the aim. There 
is a marked but reversible form of systolic and 
diastolic myocardial dysfunction with life-threatening 
ventricular ectopic dysrhythmias, which compromises 
postresuscitation survival with a high fatality rate in 
the early hours and days after successful resuscitation. 
This fatal outcome of victims after initially successful 
resuscitation for cardiac arrest has been attributed 
both to global myocardial ischemia during the cardiac 
arrest, and the adverse effects of reperfusion.3,4 The 
awareness of the pathophysiology before, during 
and early after restoration of the circulation is of 
crucial importance to improve the outcomes of 
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cardiopulmonary resuscitation (CPR). Braunwald 
and Kloner5 defined “the stunned myocardium” as 
a prolonged postischemic myocardial dysfunction 
with an eventual return of normal contractile activity. 
Stunning is now thought to occur in several clinical 
situations including delayed recovery from effort 
angina, unstable angina, coronary revascularization, 
ischemic cardioplegia, respiratory arrest, 
electroconvulsive therapy, cardiac transplantation, 
and cardiac arrest.1-3,5-7 However, the resuscitation 
process seems to be more complicated and warrants 
understanding to explain the high variable outcomes. 
The cellular and hemodynamic levels during and soon 
after resuscitation are underestimated so far.  

Hemodynamic changes after cardiac arrest.  Post-
resuscitation syndrome. It is a status of myocardial 
dysfunction after the restoration of circulation by 
successful resuscitation that manifests by increased 
cardiac filling pressures, decreased cardiac index and 
a decrease in both systolic and diastolic function. 
Severe but temporary left ventricular systolic 
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(LV) and diastolic dysfunction may follow 10-15 
minutes of untreated cardiac arrest and successful 
resuscitation. However, prolonged CPR will progress 
to the irreversible stage of myocardial dysfunction. 
The dramatically global nature of this systolic 
dysfunction after resuscitation has been demonstrated 
with echocardiography, as well as ventriculography 
causing a decrease in ejection fraction, a decrease in 
fractional shortening, a decrease in dP/dt, a decrease 
in peak systolic left ventricular pressure/end systolic 
volume ratio, and a rightward shift in the pressure 
volume relationship. The initial lower ejection 
fraction (EF) post CPR is a predictor for lower 
cardiac index post resuscitation and the development 
of multiorgan failure in the next 24 hours.2,3,8  The 
first study in an intact in vivo model2 demonstrated 
that marked stunning of the myocardium does 
occur after successful resuscitation from cardiac 
arrest. Left ventricular pressures, cardiac index and 
hemodynamically measured isovolumic relaxation 
time all confirmed left ventricular systolic and 
diastolic dysfunction. Full recovery was found by 48 
hours. In the second case,6 sudden respiratory arrest 
occurred during a dental procedure. Echocardiogram 
revealed diffuse hypokinesis of LV with normal LV 
size and EF of 25%. After 2 weeks, multiple gated 
acquisition (MUGA) scan and stress echocardiogram 
were completely normal. According to the fact that 
myocardial stunning includes the persistence of left 
ventricular dysfunction after the return of normal 
myocardial blood flow, myocardial blood flow might 
be unchanged between baseline levels and that found at 
5 hours after resuscitation, even though left ventricular 
ejection fraction (LVEF) remained markedly 
decreased by 5 hours. These data convincingly show 
that the phenomenon of postresuscitation myocardial 
dysfunction is an example of acute, but reversible 
heart failure and aggressive support is indicated 
during the first 48-72 hours. Good long-term outcome 
is possible if this early severe period of dysfunction 
can be overcome. On the contrary, prolonged and 
ineffective CPR will cause progressive reductions 
in LV diastolic and stroke volume and increases in 
LV free-wall thickness and stiffness resulting in the 
“stone heart”, which is a severe and irreversible form 
of ischemic contracture.9,10   

Determinants of postresuscitation myocardial 
stunning.  Duration of cardiac arrest. The most 
significant factor for developing postresuscitation 
myocardial dysfunction is the prolonged resuscitation 
effort. The LVEF and pulmonary artery wedge 
pressure were significantly worse postresuscitation 

after 15 min of ventricular fibrillation (VF) compared 
with only 10 min of VF.11 Progressive impairment 
in diastolic function terminates in a stone heart after 
prolonged intervals of cardiac arrest.9 The University 
of Arizona Resuscitation Research Group has been 
investigating postresuscitation myocardial dysfunction 
with invasive and noninvasive measurements of 
LV before and after 10 and 15 minutes of untreated 
cardiac arrest. After 10 minutes of untreated VF, we 
observed the maximal dysfunction at 6 hours with 
partial resolution by 24 hours and full recovery by 
48 hours indicating that postresuscitation myocardial 
dysfunction is a true stunning phenomenon. After 15 
minutes of VF, no data could be obtained at 24 hours 
because all subjects died overnight.11 Such data suggest 
that transient left ventricular failure postresuscitation 
can be life threatening and resuscitation should not 
be delayed or prolonged.1,2,9,11 The duration of cardiac 
arrest prior to the start of CPR in human victims is the 
best single predictor of outcome.12 Efforts are needed 
to educate and train the public, emphasizing that after 
4-5 minutes of cardiac arrest without defibrillation, 
bystander CPR is essential. It should be performed, 
even if a defibrillator is present, for 2-3 minutes 
before defibrillation.13

Phases of cardiac arrest.  Three phases have 
been identified during cardiac arrest; the first is the 
electrical phase, which lasts about 5 minutes wherein 
defibrillation is the priority.14 The use of automated 
external defibrillators (AEDs) within 3 minutes 
following the onset of VF resulted in the highest 
ever-reported survival of 70%. Survival from VF 
cardiac arrest declines approximately 7-10% for each 
minute without defibrillation.15 The second phase is 
the hemodynamic phase that lasts from 4-10 minutes; 
during that time circulatory support using chest 
compression is the priority.16 During the hemodynamic 
phase, LV becomes empty as blood shifted to the right 
side. The third phase is the metabolic phase,14 wherein 
drugs and hypothermia can be used. In the second and 
third phases of cardiac arrest, perfusion is critical in 
maintaining coronary perfusion pressure and vital to 
survival. The use of AED can be harmful in the last 
2 phases. Electrical shock in patients with prolonged 
VF results in defibrillation not to a perfusing rhythm 
but to a pulseless electrical activity.17 Thus, the 
methodology of CPR and its application according to 
the appropriate phase of cardiac arrest plays pivotal 
role in the fate of the postresuscitation myocardial 
function.18 

Postresuscitation disease. The postresuscitation 
disease is a specific pathophysiologic state of vital 
organ systems early after ischemic anoxia. Adrie et 
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al19 hypothesized that postresuscitation disease may 
be related to an early systemic inflammatory response, 
leading to an exacerbation of the inflammatory 
balance and could be associated with an “endotoxin 
tolerance”. Postresuscitation disease is similar to that 
seen in severe sepsis as it characterizes by high levels 
of circulating cytokines and adhesion molecules, 
the presence of plasma endotoxin, and dysregulated 
leukocyte production of cytokines. Coagulation 
abnormalities occur consistently after successful 
resuscitation, and their severity is associated with 
mortality. For example, plasma protein C and S 
activities after successful resuscitation are lower in 
nonsurvivors than in survivors. Low baseline cortisol 
levels may be associated with an increased risk 
of fatal early refractory shock after cardiac arrest, 
suggesting adrenal dysfunction in these patients. 
The stress-induced proinflammatory cytokines, 
particularly tumor necrosis factor-alpha (TNF-
[alpha]) and interleukin-1beta, are known to depress 
myocardial function. Tumor necrosis factor-alpha and 
interleukin-1beta synthesized and released in response 
to the stress of global ischemia accompanying cardiac 
arrest play an important role in the development of 
postresuscitation LV dysfunction as well.19-21 The 
hemodynamic effects of TNF-[alpha] are characterized 
by decreased contractility, reduced ejection 
fraction, decreased systemic vascular resistance, 
hypotension, and biventricular dilation.22,23 All of 
these hemodynamic changes, with the exception of a 
decrease in systemic vascular resistance, characterize 
the resuscitated myocardium.23 The typical decreases 
in myocardial contractility (LV dP/dt), ventricular 
dilation (suggested by the decrease in cardiac output 
and stroke volume accompanied by no change in 
LV end-diastolic pressure), and hypotension were 
confirmed in one study.21 In this study, systemic 
vascular resistance was elevated above control values 
during the postresuscitation observation period and 
is probably related to endogenous catecholamine 
release following resuscitation resulting in increased 
peripheral arterial tonus. Tumor necrosis factor-
alpha is believed to exert its myocardial depressant 
effects by disrupting calcium homeostasis or calcium 
sensitivity and the normal myocardial contraction-
relaxation cycle.24 

The role of ischemia. During ischemia, there is a 
reduction in both creatine phosphate and adenosine 
triphosphate (ATP). With reperfusion; there is an 
immediate restoration of the normal creatine phosphate 
level while ATP takes several days to return to normal, 
this depletion of the total adenine nucleotide pool leads 
to prolonged depression of myocardial contractility. 

The other possible mechanisms of myocardial 
stunning include alteration in sarcoplasmic calcium 
ATP and calcium metabolism, up-regulation of the heat 
shock protein and generation of oxygen-free radicals. 
A major hypothesis with significant experimental 
support is that enhanced oxidative stress is a critical 
component in the pathophysiology of stunning.25,26 
Ischemia-reperfusion injury is thought to be due to the 
generation of oxygen-derived free radicals such as the 
superoxide and hydroxyl radicals. Such free radicals 
lead to lipid peroxidation, cellular dysfunction and 
stunning of myocardium. Numerous studies have 
implicated the nitric oxide-peroxynitrate pathway 
in ischemia reperfusion injury. Reperfusion and 
reoxygenation could play an important precipitating 
role in postresuscitation myocardial dysfunction.27-29

Chest compression. The weakest links in the 
chain of survival after out-of-hospital cardiac 
arrest due to ventricular fibrillation are the lack 
of bystander-initiated basic CPR and the delay in 
defibrillation. Since the coronary and cerebral vessels 
are maximally dilated during cardiac arrest, the main 
factor in myocardial perfusion during basic CPR is 
the coronary perfusion pressure, which depends on 
the diastolic pressure that created during the release 
phase of chest compression. The cerebral perfusion 
pressure is related to the systolic pressure created 
during the chest-compression phase of CPR.  The 
perfusion pressure falls every time chest compressions 
are interrupted for assisted ventilation, and it takes 
time to build up again once chest compressions 
are reinitiated.30 Accordingly, with a ratio of 15 
compressions to 2 breaths, the highest perfusion 
pressures are present for less than half the time. 
Starting with chest compressions in the hemodynamic 
phase can attain a survival of 20% compared to 4% 
if during this phase electrical shock is given first and 
followed by chest compressions.18

Hallstrom et al31 have confirmed that in cases of 
witnessed sudden cardiac arrest with a nonrespiratory 
cause, CPR by chest compression alone is as good 
as, and possibly better than the now standard CPR 
by compression plus ventilation. Wik et al32 agreed 
that CPR first prior to defibrillation offered no 
advantage in improving outcomes for some cases 
or patients with ambulance response times shorter 
than 5 minutes. However, patients with ventricular 
fibrillation and ambulance response intervals longer 
than 5 minutes had better outcomes with CPR first 
before defibrillation were attempted. Interruptions 
of precordial compression for rhythm analyses that 
exceed 15 seconds before each shock compromise 
the outcome of CPR and increase the severity of 
postresuscitation myocardial dysfunction.33 
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Fibrillation and defibrillation. The normal 
balance of myocardial energy supply and demand 
is disrupted during VF because the demand of the 
myocardium for energy exceeds that is available 
from a reserve of high-energy phosphates and from 
anaerobic glycolysis. Consequently, the net supply 
of ATP available to the myocyte decreases to critical 
level.34 Decrease in myocardial tissue ATP during 
ischemia is correlated with the severity of myocardial 
injury and therefore, it is a predictive of myocytes 
survival when coronary perfusion is restored.35 
Patients with ventricular fibrillation suffer a complex 
set of insults that may include defibrillation, ischemia 
and even tissue infarction. It is worth remembering 
that the classic concept of myocardial stunning 
is a consequence of ischemia, not defibrillation. 
However, the final lesion in stunning is a reduction 
in the myofilament contractile response to increase 
the intracellular Calcium, a similar lesion underlies 
mechanical dysfunction after successful defibrillation 
has been reported.36

Electrical shocks that defibrillate hearts 
successfully also produce myocardial injury and 
this injury increase the higher energy shocks. It 
was thought that this injury occurs only in settings 
in which the myocardium is underperfused. The 
electrochemical activity of the arrhythmia itself may, 
in the absence of ischemia, contribute to excitation-
contraction uncoupling via intracellular calcium 
overload. Electrical countershocks may potentiate 
this effect and have furthermore been linked to 
the dose-dependent release of free radicals and to 
waveform specific effects on mitochondrial function 
and oxidative metabolism which might aggravate 
the postresuscitation stunning.37-39 High-energy 
defibrillator produces more severe LV dysfunction 
while fixed low energy biphasic waveform defibrillator 
significantly reduces the severity of postresuscitation 
myocardial dysfunction compared with escalating 
monophasic energy defibrillator.40,41 Leng et al42 
found that diastolic function is more impaired than 
systolic function for both waveform types, with more 
prominent filling impairments after monophasic 
countershocks persisting for up to 15 minutes while 
the systolic function was much better with biphasic 
shocks.41,42

In conclusion, postresuscitation syndrome 
comprises 2 major components: pathophysiologic 
postresuscitation disease and postresuscitation 
hemodynamics. Both components predict the 
myocardial function, which in its turn will outline 
the outcome of the resuscitation effort. Awareness of 
those components before and early after restoration 
of the circulation will improve the outcomes of CPR.
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