Simvastatin inhibits neutrophil degranulation induced by
anti-neutrophil cytoplasm auto-antibodies and N-formyl-
methionine-leucine-phenylalanine (fMLP) peptide
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Objectives: To test the hypothesis that simvastatin is
capable of blocking human neutrophil degranulation
induced by proteinase 3 (PR3)-anti-neutrophil cytoplasm
auto-antibodies (ANCA) and myeloperoxidase (MPO)-
ANCA, and by the chemotactic and inflammatory
peptide  N-formyl-methionine-leucine-phenylalanine

(fMLP).

Methods: This study was conducted between March
2010 and September 2011 at the Renal Institute
of  Birmingham, University —of Birmingham,
Birmingham, United Kingdom. Immunoglobulin G
(IgG) was purified from the plasma of 20 randomly
selected patients with ANCA-associated vasculitis
(10 PR3- and 10 MPO-ANCA), and their ability
to induce neutrophil degranulation in the presence
or absence of simvastatin (10 puM) was tested. The
ability of the same dose of simvastatin to block fMLP-
induced neutrophil degranulation was also tested.
In addition, the ability of serum obtained from rats
that received simvastatin at a dose of 25 mg/kg/day
to block neutrophil degranulation in vitro was tested.

Results: The addition of simvastatin significantly
inhibited ANCA IgG-induced neutrophil degranulation
by 48% (p=0.02). There was no significant difference
in response to simvastatin inhibition (p=0.73) between
PR3- and MPO-ANCA. Simvastatin also inhibited
neutrophil degranulation induced by 1 uM fMLP (30%,
7=0.04). We further demonstrated that serum from
rats that received simvastatin significantly inhibited
neutrophil degranulation induced by ANCA (31.7%,
»=0.01) and fMLP (23.5%, p=0.03) compared to serum

from control animals.

Conclusion: Simvastatin blocked both ANCA and
fMLP-induced neutrophil degranulation. It is worth
pursuing further therapeutic investigation of statins in
vascular inflammatory diseases that involve neutrophil
degranulation in their pathogenesis.
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nti-neutrophil  cytoplasmic  auto-antibodies

(ANCA) directed against proteinase 3 (PR3)
and myeloperoxidase (MPO) are implicated in
the pathogenesis of systemic small vessel vasculitis
characterized by severe inflammation and necrosis of
blood vessel walls affecting vital organs, such as kidney
and lungs."” The binding of ANCA to MPO and PR3
on the surface of neutrophils results in an increase
in neutrophil adhesion and migration through the
endothelium.® Using mice with a humanized immune
system, we recently reported a direct evidence that
anti-PR3 ANCA IgG are pathogenic in vivo, and have
the capacity to trigger all the hallmarks of vasculitis
in mice with circulating human neutrophils.” In vivo
animal models have also been used to confirm that
ANCA directed against the neutrophil antigen MPO and
neutrophils are intimately involved in development of
glomerulonephritis and vasculitic lesions.®*” The granule
enzymes, MPO, and PR3 are implicated in host defence
against infectious diseases.'®! Bacterial infections were
reported to cause small vessel vasculitis,'>"> and playarole
in the development of ANCA.'*"> The bacterial product
N-formyl-methionine-leucine-phenylalanine ~ (fMLP)
peptide is an important factor in the signal transduction
of neutrophil recruitment in vascular inflammation,'*"
and the inhibition of the fMLP receptor with either
inhibitory antibodies or receptor’s specific antagonist
prevented neutrophils’ intravascular crawling and
significantly inhibited chemotaxis of neutrophil towards
necrotic cells."®* Human immunoglobulin (Ig)G from
patients with ANCA-associated vasculitis and fMLP are
potent activators of neutrophil degranulation, which
is an important step in vascular inflammation.”"* The
cholesterol lowering agents, statins, are known to have
a range of anti-inflammatory effects.”**® Simvastatin
was shown to block lipopolysaccharide-induced acute
lung injury by decreasing neutrophil recruitment, and
was also shown to inhibit fMLP-induced neutrophil
adhesion and reactive oxygen species release.”
Therefore, in this study we tested the hypothesis that
simvastatin is capable of blocking human neutrophil
degranulation induced by proteinase 3 (PR3)-ANCA
and myeloperoxidase (MPO)-ANCA, and by the
chemotactic and inflammatory peptide N-formyl-
methionine-leucine-phenylalanine (fMLP).

Disclosure. This study was funded by the Medical

Research Council (Grant # G0801025), United
Kingdom.
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Methods. This study was conducted between March
2010 and September 2011 at the Renal Institute of
Birmingham, University of Birmingham, Birmingham,
United Kingdom. All reagents and chemicals were
obtained from Sigma Aldrich (Poole, UK) unless
otherwise stated. Neutrophils were isolated from healthy
volunteers using Percoll gradient as previously described
by Toothill et al.?® The ability of neutrophils to exclude
Trypan blue was used to measure cell viability. Using
the immunocytochemistry method, Percoll purified
neutrophils (1x10° cells/slide) were fixed in cold ethanol
and incubated with 1/20 diluted plasma from either
MPO-ANCA or PR3-ANCA vasculitis patients, or with
the same dilution of plasma from mesangiocapillary
glomerulonephritis (MSCGN) patients as a control
kidney disease. Goat anti-human IgG1 conjugated to
Alexa 568 (Invitrogen, UK) and 4’,6-diamidino-2-
phenylindole (DAPI) to stain the nucleus were then
applied, and the slides were then visualized using a
Zeiss confocal LSM 510 microscope (Zeiss, Gottingen,
Germany). Neutrophil degranulation was assessed by
the release of myeloperoxidase as described previously
by Hussain et al.?? In brief; neutrophils at 2.5x10%/ml
were primed with tumor necrosis factor (TNF)a and
cytochalasin B to increase the expression of ANCA
antigens, and incubated with 200 pg/ml IgG or 1
uM fMLP (positive control) for 15 minutes at 37°C.
Supernatants were removed and enzymatic activity was
assessed by incubating them with the MPO substrate,
o-phenylendiamine dihydrochloride (OPD) for 30
minutes, and assessing optical density at 450 nm.
Neutrophils were pre-treated for 15 minutes with
either active simvastatin (Calbiochem, Nottingham,
UK), or serum from rats that received simvastatin
prior to priming cells to test its inhibitory effect on
degranulation assay. The corresponding controls were
neutrophils pre-treated with the vehicle, or with serum
from rats given normal saline. Rats were maintained in
a pathogen-free barrier facility with a 12-hour light/
dark cycle, and had free access to food and water.
Simvastatin drug (Rosemont Pharmaceuticals, Leeds,
UK) was administered daily for more than 2 weeks at a
concentration of 25 mg/kg/day to Wistar Kyoto (WKY)
rats (n=4 rats) by oral gavage. The same number of rats
also received normal saline by oral gavage as control
animals. The conversion of simvastatin drug into an
active form circulating in the blood of these animals
were used as a source of simvastatin to block neutrophil
degranulation in response to fMLP or ANCA IgG.
Human IgG samples were purified from plasma
exchange effluent of patients with active anti-PR3 and
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anti-MPO  positive pulmonary and renal vasculitis
undergoing plasmapheresis as part of routine clinical
care. The plasma samples used to isolate IgGs were
collected under the ethics of the South Birmingham
protocol RRK2086. All fulfilled Chapel Hill consensus
classification criteria for diagnosis of systemic small
vessel vasculitis.*® Control IgG was purified from plasma
exchange effluent derived from a patient with MSCGN
(control disease) or pooled plasma from healthy donors.
Total IgG was separated from plasma using protein
G affinity chromatography as previously described by
Williams et al,>' and tested in immunocytochemistry
and degranulation assays mentioned above.

Statistical analysis was performed with Mann-
Whitney test or the 2-tailed Student’s t-test. A p<0.05
was considered statistically significant.

MSCGN

Figure 1 - Binding of anti-neutrophil cytoplasmic auto-antibodies
(ANCA) to human neutrophils. Immunostaining of human
neutrophils with plasma from vasculitis patients compared
to plasma from the control disease, mesangiocapillary
glomerulonephritis  (MSCGN).  The  myeloperoxidase
(MPO)-ANCA, proteinase 3 (PR3)-ANCA, or MSCGN
diluted plasma (1/20) were added to each slide and this was
followed by the addition of anti-human immunoglobulin G
(red) and 4’,6-diamidino-2-phenylindole to stain the nucleus
blue. Perinuclear staining (A) and cytoplasmic staining (B)
represent the interaction of MPO-ANCA and PR3-ANCA
with human neutrophils compared to control MSCGN (C).
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Figure 2 - Inhibition of neutrophil degranulation by active simvastatin.
The effect of simvastatin on cell survival (A) was monitored
using trypan blue exclusion assay after treating human
neutrophils with different concentrations of simvastatin
(5, 10, 20, 50, 100 uM) for 150 minutes. The anti-
neutrophil cytoplasmic auto-antibodies (ANCA) or control
immunoglobulin Gs were incubated with human neutrophils
with or without 10 pM simvastatin (B) and the supernatants
were assayed for neutrophil degranulation by the release
of myeloperoxidase (MPO) (C). Comparison between
simvastatin (10 pM) inhibitions for PR3- and MPO-
ANCA-induced neutrophil degranulation. Results represent
the median (xIQR), (n=20) and experiments performed in
triplicate (D). Human neutrophils were incubated with 1 uM
N-formyl-methionine-leucine-phenylalanine  (fMLP) with
or without simvastatin (10 uM) and the supernatants were
assayed for neutrophil degranulation by the release of MPO.
Results represent the mean (+SEM) (n=3) and experiments
were performed in triplicate.
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Figure 3 - Inhibition of neutrophil degranulation by serum treated
with simvastatin drug. A strong neutrophil degranulator,
anti-neutrophil cytoplasmic auto-antibodies (ANCA) A) was
selected to test neutrophil inhibition by serum from animals
receiving simvastatin drug. A 100 pl of neat serum obtained
from rats (n=4) received simvastatin drug or control serum
(n=4) was added to human neutrophils (2.5 x 10%ml) and
incubated at 37°C for 15 minutes before cells was primed with
tumor necrosis factor-ot and cytochalasin B and incubated for
15 minutes with either 200 pg/ml ANCA IgG B) or 1 uM
N-formyl-methionine-leucine-phenylalanine (fMLP) C) and
the supernatants were assayed for neutrophil degranulation
by the release of myeloperoxidase. Results represent the mean
(+standard error of mean). Experiments were performed in
triplicate.
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Results. In order to test the presence and capability
of ANCA circulating in the blood of patients with
vasculitis and binding to human neutrophils, diluted
plasma obtained from patients with microscopic
polyangiitis (tested positive for p-ANCA) and Wegener’s
glomerulonephritis (tested positive for ccANCA) were
incubated with human neutrophils in vitro. Plasma
from mesangiocapillary glomerulonephritis (MSCGN)
that tested negative for both p-ANCA and c-ANCA
auto-antibodies was used as a disease control. Cells
were then immunostained and visualized using confocal
microscopy (Figure 1). Positive immunostaining of
human neutrophils by plasma from MPO-ANCA
(p-ANCA) and PR3-ANCA (c-ANCA) positive
patients was observed (Figures 1A and 1B) but absent
in the disease control (Figure 1C). Control neutrophils
from mice failed to react with the plasma that tested
positive for PR3-ANCA and weakly immunostained
by plasma tested positive for MPO-ANCA (data not
shown). We then purified IgGs from the plasma of
20 randomly selected patients with ANCA-associated
vasculitis with high titers of auto-antibodies (10 PR3
and 10 MPO-ANCA). To determine the effect of
the purified ANCA IgGs on neutrophil function and
the potential inhibition of such effects by statins, we
tested the ability of each IgG preparation to stimulate
neutrophil degranulation in the presence and absence of
simvastatin. This was assessed by measuring the release
of MPO from stimulated neutrophils with a safe dose
of simvastatin. The effect of increasing concentrations
(5-100 pM) of simvastatin on cells viability for up to
2 hours was determined using trypan blue exclusion
assay. As shown in Figure 2A, simvastatin of up to 20
uM was safe to use in the neutrophil degranulation
assay. Compared to healthy donors IgGs, ANCA IgGs
significantly (p=0.03) induced degranulation of human
neutrophils that was significantly (p=0.02) inhibited
with 10 pM simvastatin (Figure 2B). We then tested if
there was a difference in simvastatin inhibition between
PR3- and MPO-ANCA and found no significant
response  (p=0.73) (Figure 2C). Both fMLP and
ANCA are potent inducers of vascular inflammation
via neutrophil activation. Therefore, we tested the
hypothesis that simvastatin may inhibit fMLP-induced
neutrophil degranulation. As expected, fMLP (1pM)
induced a strong neutrophil degranulation signal,
and pre-incubation of cells with active simvastatin
(10 uM) significantly blocked the action of fMLP by
30% (+5, p=0.04) as shown in Figure 2D. To further
test that prescribed simvastatin drugs are converted
into a functionally active form circulating in the blood



Simvastatin blocks neutrophil degranulation ... Al-Ani

of animals that could block neutrophil degranulation
induced by ANCA or fMLP comparable to the active
simvastatin form (sodium derivative), serum obtained
from WKY rats that received the drug were used as a
source of active simvastatin compared to control serum
from rats which received normal saline. Among the 20
purified ANCA IgGs, we selected the IgG (ANCAL)
that gave us a strong neutrophil degranulation (Figure
3A) to test our hypothesis mentioned above. We found
a significant inhibition of neutrophil degranulation in
response to ANCA (Figure 3B, p=0.014) and fMLP
(Figure 3C, p=0.034).

Discussion. This study shows that simvastatin
is able to block neutrophil degranulation induced by
MPO- and PR3-ANCA IgGs derived from active
vasculitis patients and by the bacterial peptide, fMLD,
which is also involved in neutrophil degranulation
and mobilization to the vascular inflammatory site.
Furthermore, this study demonstrates a comparable
inhibition by simvastatin to neutrophil degranulation
induced by MPO- and PR3-ANCA IgGs. Binding of
auto-antibodies (ANCA) to human neutrophils shown
in Figure 1 is regarded as the first step in the pathogenesis
of small vessel vasculitis causing lung injury and
glomerulonephritis that leads to renal failure.”>* The
ANCA-neutrophil complex was previously shown
to slow down the movement of neutrophils inside
the blood vessels and enhance neutrophil adherence
followed by degranulation and release of reactive oxygen
species (ROS) like superoxide that initiate endothelial
and vascular injury.*** We therefore tested to see if
simvastatin is able to prevent neutrophil degranulation,
which is involved in vascular injury. Indeed, our data
shown in Figure 2 demonstrate inhibition of neutrophil
degranulation induced by ANCA with simvastatin.
These results complement the previously published
work on inhibition by cerivastatin and simvastatin, of
superoxide generation by neutrophils stimulated with
MPO- and PR3-ANCA,* and highlight the importance
of these anti-inflammatory agents as a tool to block
neutrophil degranulation and neutrophil release of
ROS in vitro. The degree of inhibition by simvastatin
was comparable between MPO- and PR3-ANCA
induced neutrophil degranulation (Figure 2), whereas
no conclusion can be deduced from the ROS inhibition
study by statins since they only used small numbers of
MPO-ANCA preparations in their study compared to
PR3-ANCA preparations.*

Infection aggravates neutrophil degranulation and
ROS release” and augments ANCA pathogenesis'

through the release of proinflammatory cytokines
that increase PR3 and MPO expression on the surface
of neutrophils, and also through an increase in the
expression of adhesion molecules on the surface of the
blood vessels.? The PR3-ANCA increases the sensitivity
of bacterial peptide, fMLP, towards neutrophils and
enhances its movement,” and fMLP induces strong
ROS release and neutrophil degranulation.'®* Such
a relationship between ANCA and fMLP prompted
us to test the hypothesis that simvastatin may inhibit
fMLP-induced neutrophil degranulation, and the
data in Figure 2 and Figure 3 clearly demonstrate a
significant inhibition to this pro-inflammatory agent by
simvastatin. This may have useful clinical implications.
However, a recently published work” reported that
simvastatin failed to block fMLP-induced neutrophil
degranulation using FACS analysis measuring cell
surface expression of DC11b, CD29, and FPRL 1. This
discrepancy with our work may be attributed to their
use of a higher dose of fMLP (10 uM) compared to 1
uM fMLP used in our experiments.

As shown in Figure 2, active simvastatin (sodium
derivative) clearly inhibited ANCA- and fMLP-induced
neutrophil degranulation. However, the prescribed
simvastatin drug, which is only converted into an
‘active’ simvastatin form inside the body,*® as expected
did not block neutrophil degranulation induced by
either ANCA IgG or fMLP (data not shown). The
prodrug inactive simvastatin is converted by a complex
process of hydrolysis and oxidation in the liver into an
active form called simvastatin acid or f-hydroxy acid.*®
We therefore, tested the ability of the serum, as a source
of active simvastatin, obtained from animals which
received one of the commercially available simvastatin
drugs (see methods section) at a concentration of 25
mg/kg/day to inhibit neutrophil degranulation. Using
high simvastatin dose was justified to compensate
for the very low bioavailability of the drug (5%)* to
make it relatively comparable to the 10 pM simvastatin
that we used here and in previous study by Choi et
al** to block ANCA-induced superoxide release by
human neutrophils. Indeed, pre-treatment of human
neutrophils with serum from rats, which received
simvastatin (Figure 3) clearly inhibited degranulation in
vitro induced by fMLP (23.5%) and ANCA (31.7%).
These findings are comparable to a previous study
that used serum obtained from hypercholesterolemic
patients on simvastatin as a source of active simvastatin,
which inhibited (24.5%) human smooth muscle
cell proliferation in vitro.*” Furthermore, the degree
of fMLP inhibition by serum from rats (23.5%) was
comparable to active simvastatin (26%), whereas a
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higher inhibition of ANCAIl-induced degranulation
was obtained by active simvastatin (39%) compared to
(31.7%) inhibition obtained with serum from animals
treated with simvastatin drug (Figure 2 and Figure 3).

We believe that further future studies need to
be carried out to investigate the potential signalling
pathways involved in the mechanism of simvastatin
inhibition such as PKC, Rho, p38MAPK, and
whether the inhibition process is through reducing
neutrophil membrane expression of ANCA antigens. In
conclusion, the findings in this study could pave the
way to the use of simvastatin in animal models to study
vascular inflammatory diseases that involve neutrophil
degranulation in their pathogenesis.
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