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ABSTRACT

الجسم  لأعضاء  الحماية  يعطي  الذي  الهيكل  العظم  يتشكل 
العظام  بارتشاف  عليه  نحافظ  العظم  توازن  أن  كما  الداخلية. 
هذا  يتغير  قد  ولكن  الجديدة.  العظام  وتكوين  المتوازنة  القديمة 
والمرضى  السرطان،  اليأس، مرضى  سن  بعد  النساء  لدى  التوازن 
الذين يعانون من حالات الالتهابات المزمنة مثل التهاب المفاصل 
السيطرة  على  ثورة  ظهرت  الأخيرة  السنوات  في  الروماتويدي. 
البيولوجية  العلاجات  باستخدام  المزمنة  الالتهاب  حالات  على 
والتي تستهدف البروتينات و/أو مسارات الالتهابات الرئيسية. 
لكن في حين أن تأثير مضاد الالتهاب للعوامل البيولوجية محدد 
وتأثيرها على خسارة العظم انبثقت حديثاً. أن إلقاء الضوء على 
المزمنة  الالتهاب  أمراض  بين  العلاقة  يبرز  العوامل  هذه  استخدام 
وخسارة العظم. نستعرض هنا مراجعة متقدمة لفهم هذه العلاقة 

في المرضى المصابين التهاب المفاصل الروماتويدي.

Bone makes up a framework that provides protection 
for internal body organs. The homeostasis of bone 
is maintained by balanced old bone resorption and 
new bone formation. However, this balance can be 
altered such as in postmenopausal women, patients 
with some cancers, and patients with chronic 
inflammatory conditions such as rheumatoid 
arthritis. In recent years, the management of chronic 
inflammatory conditions was revolutionized by 
the use of biologic therapies that target key pro-
inflammatory proteins and/or pathways. However, 
whilst the anti-inflammatory effect of these biologic 
agents is well-established, their effect on bone loss 
is just emerging. The use of these agents highlights 
the relationship between the pathogenesis of chronic 
inflammation and bone loss. Here, we provide 
an overview of advances in understanding this 
relationship in patients with rheumatoid arthritis.
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The review is directed to the wider readers of the 
journal. Its purpose is to provide an overview on 

recent progress in understanding mechanisms of bone 
loss in patients with primary osteoporosis and patients 
with rheumatoid arthritis (RA). The review summarizes 
evidence on the overlap between chronic inflammation 
and bone loss in RA.

The structure and organization of bone. Bone is 
composed of a mineralized matrix with inorganic and 
organic components. The inorganic component is 
mainly crystalline mineral salts and calcium phosphate in 
the form of hydroxyapatite, Ca10(PO4)6(OH)6 on which 
bone hardness depends. The organic part is primarily 
type I collagen, which forms more than 25% of bone, 
and is in a fiber form with a triple helical structure that 
provides bone’s flexibility. Bone acts as a framework for 
the muscular system to provide protection for internal 
organs and as a mineral reservoir.1,2 There are 2 main 
types of bone, cortical, which makes up to 80% of bone 
and trabecular, which makes up to 20%. Cortical bone 
is dense and compact and forms the protective exterior 
shell of long bones and vertebrae and helps resist the 
stress of weight. Trabecular bone is spongy-like and 
comprises a network of fine and interlacing partitions, 
the trabeculae, and forms the main part of the vertebral 
body and the epiphyses of long bones. Bone loss initially 
affects areas composed, primarily, of trabecular bone 
due to its higher rate of turnover (~8 times higher) than 
cortical bone.1,2

Bone homeostasis. Bone homeostasis is tightly 
regulated by remodeling, in which old bone is removed 
(resorption) and replaced by new bone.1-3 These processes 
involve osteoblasts, osteocytes, and osteoclasts.2 

Osteoblasts are responsible for bone formation. They 
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are relatively immature cells, which line the bone and 
produce hormones, such as prostaglandins, enzymes 
such as alkaline phosphatase, and matrix proteins such as 
glycosaminoglycans, osteocalcin, osteonectin, and bone 
sialoproteins.3 Osteocytes are generated from osteoblasts 
that migrate into the bone matrix from the surface of 
narrow regions of newly-formed organic matrix. They 
act as mechano-sensory receptors to regulate bone’s 
response to stress and mediate bone formation, matrix 
maintenance, and calcium homeostasis.4

Osteoclasts are multinucleated cells of monocyte 
origin that cause resorption. They differentiate from 
monocytes with macrophage-colony-stimulating 
factor (M-CSF), receptor activator for nuclear 
factor кB (RANK), RANK-ligand (RANK-L), and 
osteoprotegerin (OPG). The engagement of RANK 
by RANK-L triggers signaling that leads to bone 
resorption. Receptor activator for nuclear factor кB 
-L is a member of the tumor necrosis factors (TNF) 
super family of ligands and receptors and a key 
osteoclastogenic cytokine that exists in soluble and 
tissue-bound forms. It is inhibited by its natural decoy 
receptor, OPG, which is soluble and non-signaling.2-5 
Genetic deletion of OPG in mouse and human leads 
to profound osteoporosis while overexpression leads 
to osteopetrosis secondary to a near-total lack of 
osteoclasts. Pro-inflammatory cytokines suppress OPG 
production and enhance RANK-L expression, thus, 
promoting osteoclast formation and function.5

Changes in bone metabolism. Bone metabolism 
undergoes physiological as well as pathological changes. 
Such changes are measured using clinical and laboratory 
tests. Bone mineral density (BMD) is a measure of the 
amount of bone minerals per square centimeter of bone 
tissue in g/cm2 determined using a number of protocols. 
Laboratory tests include serum levels of bone-specific 
alkaline phosphatase, osteocalcin, deoxypyridinoline, 
and others.6-8

Reduction in BMD in any individual relative to 
the normal value in a population is characteristic of 
osteoporosis, a condition common in postmenopausal 
women, with one  in 3 over the age of 50 years worldwide.6 

Osteoporosis starts when the regular processes of bone 
formation and resorption become unbalanced leading 
to net loss and fractures, mostly of vertebra, hip, and 
wrists. In addition to osteoporosis, bone loss is also seen 
in patients with chronic inflammatory diseases, such as 
RA, cancer, endogenous and exogenous thyroxin excess, 
patients with diseases affecting the gastrointestinal 
tract, and patients with long-term treatment with 
corticosteroids.5,8-10 

In contrast to osteoporosis, patients with the rare 
condition of osteopetrosis have an increase in BMD. 
Osteopetrosis, also known as marble bone disease, is an 
inherited but extremely rare condition in which bone 
hardens and becomes denser. In addition, some patients 
can suffer from the softening of the bones due to 
defective bone mineralization as a result of inadequate 
amounts of available phosphorus and calcium.5

Regulation of bone metabolism. Bone is continuously 
remodeled to maintain optimal mass and repair any 
damages such as fractures. A number of factors affect 
bone remodeling including aging, menopausal status, 
chronic inflammation, diet, drugs, lack of exercise, 
hormones, stress, and injuries.11 In menopausal women, 
estrogen levels play the key role in the remodeling 
process through their ability to stimulate osteoblasts. 
Estrogen is produced by the ovaries before menopause. 
After menopause, the ovaries stop producing estrogen 
but the adrenal gland secretes small amounts of 
androgens and these are converted to estrogen by the 
enzyme aromatase. Reduced estrogen levels in post-
menopausal women results in reduced osteoblasts 
activity and bone mass.9 Bone mass is also influenced 
by ethnicity, genetics, and life style. For example, 
African-American females achieve higher peak bone 
mass than Caucasian females. Indeed, there is evidence 
that vertebral fractures are less common in black than 
white and Japanese women.12,13 The risk of bone loss 
is enhanced by excessive consumption of alcohol and 
smoking.11 

Measurement of changes in bone metabolism. A 
range of clinical and laboratory protocols are used to 
monitor changes in bone metabolism. In most clinical 
settings, BMD and bone mineral content (BMC) are 
used as standard units to determine changes in bone 
metabolism. Bone mineral density signifies total bone 
mineral mass, whereas BMC represents total bone 
mineral mass in a specific region. Measurement of BMD 
at any skeletal site provides a predictive value of fracture 
incidence. Moreover, in order to predict osteoporotic 
fractures, assessment of the axial skeletal sites of the 
spine and femur has proved to be useful.6-8 Protocols 
in general use for assessing changes in bone density and 
metabolism are summarized below. 

A) Radiographic protocols. 1) Dual energy 
x-ray absorptiometry (DEXA). Dual energy x-ray 
absorptiometry is the most widely used protocol for 
its precision, accuracy, and low radiation dose. The 
World Health Organization (WHO) standards for 
the diagnosis of osteoporosis are based on DEXA.7,8  

Dual energy x-ray absorptiometry involves 2 different 
energy x-ray beams that are absorbed differently by 
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bone mineral and soft tissues and assessment depends 
on measurement of the transmission of x-rays with 
high and low energies. Results of DEXA represent a 
composite measure of both cortical and trabecular 
bones in gram/square centimeter.14-16 

2) Peripheral dual energy x-ray absorptiometry 
(pDEXA). This technique measures bone density 
at peripheral sites, such as the wrist and calcaneus, 
using dual energy x-ray. However, variations between 
the peripheral and central sites are common and may 
underestimate fracture risks. Nevertheless, pDEXA 
is appropriate for older patients because bone loss in 
the peripheral skeleton of elderly patients would have 
reached that of central skeletal sites.16,17

3) Single x-ray absorptiometry (SXA). Single x-ray 
absorptiometry uses the same principles as DEXA, but 
it does not allow for adjustment for soft tissue as it 
utilizes only a single energy beam. Therefore, the use of 
SXA is limited to distal appendicular skeletal structures 
that have little interfering soft tissue. The most common 
sites are the calcaneus, the distal radius and ulna. The 
protocol is an inexpensive predictor of fracture risks in 
older women.11,16

4) Quantitative ultrasound (QUS). Quantitative 
ultrasound uses non-ionizing radiation, hence, has the 
potential of becoming a low-cost alternative to DEXA. 
Several prospective studies indicate that the predictive 
capability of QUS for hip fracture is as good as DEXA 
and that QUS and DEXA both predict hip fractures 
better than DEXA alone of the lumbar spine. Because 
the results of most trials depend on DEXA, many 
believe that more information is needed before QUS is 
widely used.16,17 

5) Quantitative computed tomography (QCT). 
Quantitative computed tomography is an x-ray 
absorptiometric protocol that uses a computed 
tomography scanner to determine volumetric density 
(mg/cm3) of trabecular or cortical bone in 3 dimensions 
(3D). It calculates BMD at selected regions of interest 
by the mean Hounsfield number. The ability of QCT 
to selectively-assess the metabolically-active and 
structurally-important trabecular bone in the vertebral 
body results in an excellent differentiation of vertebral 
fracture from healthy vertebrae. Currently, QCT is 
used to assess BMD only in the spine. Generally, it has 
better sensitivity than DEXA, but is costly and has high 
radiation levels.16

6) Radiographic absorptiometry. This protocol is 
used for bone mass measurement at peripheral sites, 
most commonly the hand or heel. It relies on taking 2 
x-rays at slightly different angles and images are analyzed 

for the average density of the middle phalanx of the 
middle 3 fingers, which is reported in absorptiometry 
units. However, the usefulness of the protocol to predict 
site-specific fracture risk remains to be established.16

B) Laboratory measurements of bone metabolism. 
Changes in bone metabolism can be assessed by 
measuring biomarkers of bone formation and resorption. 
Bone formation is generally assessed by measuring blood 
levels of osteocalcin, alkaline phosphatases, and pro-
collagen peptides. In contrast, bone resorption is assessed 
by products of collagen breakdown such as C- and 
N-telopeptide cross-links of collagen and their adjacent 
peptides in blood and/or urine. These measurements 
are widely used to confirm the pathological bone loss 
and response to therapy as changes in bone resorption 
markers precede bone formation as detected by the 
established radiographic protocols.17 Our own studies 
indicate that the combination of DEXA scan and 
blood levels of RANK-L and OPG are best at revealing 
changes in bone metabolism in patients.

Pathological changes in bone metabolism. 
A) Primary osteoporosis. Osteoporosis is a systemic 
skeletal disease characterized by low bone mass and 
microarchitectural deterioration of bone resulting 
in fragility and fractures, as commonly seen in 
postmenopausal women. The condition is categorized 
into primary and secondary. Reduction in bone mass, 
which is unrelated to chronic illnesses or medication 
and is a consequence of aging and decreased gonadal 
function constitutes primary osteoporosis. In women, 
reduction of estrogen in premenopausal or early 
menopausal stages increases the risk of osteoporosis. 
Low levels of testosterone and/or estrogen in men 
can also result in osteoporosis. Deficient intakes of 
calcium and vitamin D, sedentary lifestyle, smoking, 
and excessive alcohol drinking may also accelerate this 
condition. 

Secondary osteoporosis occurs in chronic diseases 
such as endocrine disturbances, cancer, gastrointestinal 
diseases, renal failure, and inflammation. The condition 
could also be induced with long-term treatment with 
glucocorticoids.11

Treatment of osteoporosis. The ultimate objective 
of treating osteoporosis patients is to prevent bone 
fractures. There are a range of drugs in use for treating 
patients with osteoporosis. 1) Hormone replacement 
therapy (HRT) is effective in preventing osteoporosis and 
fractures, and is widely used in postmenopausal women. 
However, HRT can increase the risk of breast cancer, 
thromboembolism, and cardiovascular disease.18-21 To 
achieve the greatest beneficial effects, treatment must 
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start before the age of 60 and lasts for at least 5 years. 
2) Bisphosphonates are synthetic analogues of cellular 
inorganic pyrophosphonates that reduce the number 
of osteoclasts by inducing apoptosis. They also inhibit 
farnesyl diphosphonate synthase, which is part of the 
mevalonate pathway of cholesterol synthesis and also 
inhibit glucocorticoid-induced RANK-L expression.22 
Bisphosphonates are used for the treatment of post-
menopausal patients and  patients with metastatic bone 
disease secondary to breast cancer. Bisphosphonates, 
however, have serious side-effects, such as effects on 
the gastrointestinal tract and osteonecrosis of the 
jaw.23-25  3) Selective estrogen receptor modulators 
(SERMs) bind estrogen receptors and act as estrogen-
agonists or antagonists depending on the target tissue 
and hormonal status. The first generation includes 
tamoxifen, for which estrogen-like agonist activity on 
bone occurs at the same time with estrogen antagonist 
activity on the breast. Second-generation SERMs 
include raloxifene, which has estrogen-like actions on 
bone, lipids, and the coagulation system and estrogen 
antagonist effects on the breast and uterus. Raloxifene 
can be used as an alternative to HRT without 
deleterious effects on the endometrium while showing 
a significant increase in BMD at the lumbar spine, hip, 
and whole body and a decrease in total cholesterol and 
LDL levels.26,27  4) Calcitonin (CT) is an endogenous 
polypeptide hormone that suppresses bone resorption 
by acting similarly to estrogens.28 Nasal application of 
CT for treatment, which started more than 50 years ago 
has almost stopped and replaced by a newly developed 
oral formulation, which has increased efficacy in phase 
II and III clinical trials. The introduction of this new 
formulation is likely to enhance patient compliance as 
it has fewer side effects.28,29 5)Teriparatide (Forsteo) is 
a recombinant form of parathyroid hormone (PTH) 
and the first anabolic agent with proven anti-fracture 
effects and good safety profile.30 Unlike anti-resorption 
agents, teriparatide increases bone formation, cortical 
thickness, and trabecular bone connectivity.31 However, 
due to excessive new bone formation and osteosarcoma 
in rats, this treatment has been limited to a maximum 
of 24 months.32  6) Biological agents, the development 
and clinical application of biological therapies have 
revolutionized medicine. This class of therapeutics 
includes recombinant proteins, monoclonal antibodies 
(mAbs), and soluble receptors that selectively target 
key disease-promoting proteins and/or pathways. 
Denosumab is one such agent approved by the US 
Food and Drug Administration (FDA) in 2010.  It is 
a fully human mAb that inhibits RANK-L binding to 
RANK.33 The agent is used for treating postmenopausal 

patients and patients treated for cancer or for RA. There 
is evidence that the increase in BMD with denosumab 
is greater than the bisphosphonate agent alendronate 
and that it decreases the risk of fracture.34,35

B) Secondary osteoporosis. In addition to primary 
osteoporosis, patients with a range of chronic 
inflammatory diseases, cancer, and patients with 
endogenous and exogenous thyroxin excess develop 
osteoporosis secondary to their primary pathology. 
In RA, the production of autoantibodies and pro-
inflammatory cytokines such as tumor necrosis 
factors-alpha (TNF-α) causes chronic inflammation, 
which leads to joint damage, but generalized bone 
damage is also a feature of the disease. Bone damage 
in RA occurs very early in the course of the disease, 
progresses rapidly, and is not repaired as it would be 
under physiological conditions.36 The detrimental effect 
of chronic inflammation on bone is evident in the 
increase in fracture risk in RA; the more inflammation 
that is present, the greater the risk of fracture. Indeed, 
decreases of 2.5 in vertebral and 5% femoral neck 
BMD, are apparent just in the first year of RA, and 
such loss doubles in the second year if disease activity 
remains uncontrolled.37

With regards to mechanisms of bone loss in 
RA, the available evidence indicates that pro-
inflammatory mediators, including TNF-α, promote 
osteoclastogenesis. Although the perception has been 
that bone loss in RA due to pro-inflammatory mediators 
is most likely to be confined to the periarticular region 
of affected joints, emerging evidence from the use of 
biological anti-inflammatory agents provide compelling 
evidence for their involvement in generalized 
osteoporosis too. This evidence highlights the overlap 
between inflammatory pathways in RA and mechanisms 
of bone resorption including direct and indirect effects 
on osteoclastogenesis. Thus, mice engineered to lack 
osteoclasts do not develop bone erosion in arthritis 
induced by TNF-α.38 Further, this appears to occur 
through the ability of TNF-α to induce RANK-L 
expression of T-lymphocytes and osteoclasts.39,40 

Indeed, when RANK-L is inhibited, the formation 
of osteoclasts in arthritic joints is inhibited.41-43 
Interestingly, however, inhibition of RANK-L does not 
appear to have any impact on the inflammation.44,45 
Further, a phase 2 clinical trial of denosumab in RA 
showed that the agent reduced bone erosion, but had 
no effect on disease activity.46 This data indicates that 
interfering with the RANK/RANK-L/OPG pathways 
have few detrimental effects on the immune system. 
In contrast, data on the effect of biologic inhibitors of 
inflammation suggests that the inflammatory response 
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in RA promotes RANK-L expression and bone 
resorption not only in the periarticular region, but 
also results in generalized bone loss. Support for this 
notion is provided by observations in which treatment 
with biologic anti-inflammatory agents including 
anti-TNF-α agents reduced RANK-L expression and 
increased OPG production.47 Furthermore, treatment 
of psoriatic arthritis patients with biologic anti-TNF-α 
agents reduced the number of peripheral osteoclast 
precursors.48 

This association between chronic inflammation 
and bone erosion in RA is clouded by the fact that a 
significant proportion of RA patients are treated with 
glucocorticoids. Glucocorticoids are used for their anti-
inflammatory efficacy, but their long-term use leads 
to bone loss. Therefore, it has been difficult to discern 
exactly how much each of these 2 events play in bone 
loss in RA. In this respect, it is interesting to note that 
a recent study49 revealed that osteoclasts induction in 
RA is inhibited with a compound modulator of the 
monomer glucocorticoid receptor. This compound 
does not induce glucocorticoid receptor dimerization, 
but suppresses the production of pro-inflammatory 
cytokines in fibroblast-like synovial cells from patients 
with RA and in osteoblasts.49 This observation further 
highlights the direct relationship between chronic 
inflammation and bone loss in RA. 

Progress in diagnosis and treatment of inflammation 
and their impact on osteoporosis in RA. Early diagnosis 
of RA has become possible with the development of 
specific laboratory tests for anti-cyclic citrullinated 
peptides (anti-CCP) autoantibodies and sensitive 
imaging protocols. These advances have laid the 
foundation for early targeted treatment of inflammation 
and bone loss in RA.50 

Anti-cyclic citrullinated peptides autoantibodies. 
Anti-CCP autoantibodies are highly specific for RA 
(~96%), and when combined with positivity for the 
rheumatoid factors (RF), confirmed diagnosis of RA 
reaches ~100% in patients with early undifferentiated 
arthritis. Interestingly, recent studies indicate that 
anti-CCP autoantibodies are also good predictors 
of reduction in lower lumbar and femoral BMD and 
radiographic erosions.51

Ultrasound (US) and magnetic resonance 
imaging (MRI) in detecting early bone erosion in RA. 
Conventional radiographic methods are not reliable 
in revealing early bone erosion in RA because such 
methods could only provide evidence of severe damage. 
However, the use of US and MRI has enabled in early 
diagnosis of RA.52 The ability of these protocols to 
reveal small erosions, early changes in bone, synovitis, 

tenosynovitis, and effusion is now widely used. 
However, whilst both protocols help evaluate early 
inflammatory changes in RA synovia it is likely that a 
combination of MRI and bone metabolism biomarkers, 
for example, measurement of RANK-L/OPG will better 
predict changes in BMD in early RA.53,54 Nevertheless, 
there are some disadvantages with the routine use 
of MRI including limited availability, long times for 
investigation and high costs.55 Ultrasound provides the 
benefit that it is more practical than MRI as it has a 
greater availability and lower cost.56 

Biologic anti-inflammatory agents and their impact 
on osteoporosis in RA. The discovery and application of 
biologic inhibitors of TNF-α have revolutionized the 
treatment of patients with RA. However, until recently 
the long-term effects of these agents, as well as other 
biologic anti-inflammatory agents, on osteoporosis 
in RA and their mechanisms of action were unclear. 
Tumor necrosis factors-alpha  is a pleiotropic cytokine 
with effects on cells, tissues, and organs (Figure 1). In 
response to injury or infection, TNF-α  is produced 
by macrophages. This induces the innate immune 
system to mount a range of responses resulting in acute 
inflammation. Tumor necrosis factor alpha achieves 
these effects by promoting lymphocyte and neutrophil 
adhesion, hematopoiesis, the production of collagenase 
and prostaglandin E2 (PGE2), and the induction of 
other pro-inflammatory cytokines. Tumor necrosis 
factor alpha also contributes to proteoglycan breakdown, 
acute tubular necrosis, and bone resorption.5 

Mechanism of bone loss due by TNF-α. Tumor 
necrosis factor-α promotes osteoclastogenesis by 
activating NF-κB transcription factor, which is 
also induced by RANK/RANK-L.57-59 Activation of 
NF-κB is a key target for TNF-α action through 
TNF receptor- 1 (TNFR-1), which is expressed 
on macrophages.60 This promotes pro-osteoclasts 
maturation even in the absence of RANK/RANK-L 
signaling.61 Tumor necrosis factors-alpha also enhances 
osteoclast differentiation by increasing the expression 
of M-CSF and RANK-L in osteoblasts.62 Furthermore, 
TNF-α inhibits osteoclast apoptosis by activating the 
mammalian target of rapamycin/S6 kinase (mTOR).63 

This enhances bone resorption by increasing the number 
of long-lived osteoclasts (Figure 2).

At the molecular level, TNF-α inhibits osteoblasts 
differentiation by inhibiting the transcriptional 
regulation of the osterix (Osx, Sp7) promoter, 
a key regulator of the initial stages of osteoblast 
differentiation.64 Further, TNF-α inhibits the Wnt-β-
catenin pathway through up-regulating the inhibitor 
Dickkopf-related protein 1 (DKK1) (Figure 3).65,66
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Biologic anti-inflammatory agents and their role 
in limiting osteoporosis in RA. 1) Etanercept is one 
of the first agents used for the treatment of RA. It is a 
recombinant dimeric form of soluble TNF-α receptor 
II, which binds with high affinity to and inhibits TNF-α 
and lymphotoxin-alpha (LT-α). In 2004, the Trial of 
Etanercept and Methotrexate with Radiographic Patient 
Outcomes (TEMPO) study67,68 established that the 

combination of methotrexate and etanercept improved 
radiographic changes in RA with 80% of patients 
having no progression in joint damage. Interestingly, 
only 37% of the patients had clinical remission as 
indicated by their disease activity score 28 (DAS28). 
2) Infliximab is a chimeric mouse-human mAb that 
was first approved for treating patients with Crohn’s 
disease, but then used for treating RA in combination 

Figure 1 - Tumor necrosis factor-alpha (TNF-α) has a wide range of biological effects.  A cartoon summarizing the range of TNF-α effects on cells, 
organs, and tissues. The outcome of TNF-α binding to its receptors on its targets is indicated. MHC - major histocompatibility complex, 
IFN - interferon, PGE - prostaglandin, IL - interleukin, GM - Granulocyte-macrophage, CSF - colony-stimulating factor  

Figure 2 - Pathways of bone loss by tumor necrosis factor-alpha (TNF-α). Tumor necrosis factor-alpha directly activates macrophage differentiation, pre-
osteoclast proliferation, mature osteoclasts activation, and inhibits their apoptosis. Tumor necrosis factor-alpha  also promotes osteoporosis by 
inducing interleukin 6 (IL-6) and receptor activator of nuclear factor kappa ß (RANK) production. Finally, TNF-α suppresses osteoblastogenesis 
by inhibiting the proliferation and differentiation of mesenchymal stem cell (MSCs) to osteoblasts. 
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Figure 3 - Tumor necrosis factor-alpha (TNF-α) promotes osteoporosis through impacting and activating a number of pathways and proteins. Tumor 
necrosis factor-alpha promotes bone resorption through enhancing osteoclastogenesis and receptor activator of nuclear factor kappa ß (RANK) + 
osteoclast precursor cell proliferation. It also induces RANK-L production and inhibits osteoblast maturation and function, in part by increasing 
the expression of the Wnt antagonist Dickkopf-related protein 1 (DKK1) resulting in impaired bone formation. OPG - osteoprotegerin

with methotrexate. Clinical evidence is consistent with 
a beneficial effect of infliximab on BMD.69,70 Some 
evidence indicates that infliximab preserved BMD 
in the lumbar spine and femoral neck after one year 
of treatment compared with bone loss of 3.9% and 
2.5% at the same sites in a control group treated with 
methotrexate alone.70 3) Adalimumab is a parenterally-
administered fully human mAb to TNF-α. Consistent 
with the beneficial bone effects of the other biologic 
anti-TNF-α agents, adalimumab in combination 
with methotrexate significantly improved radiographic 
changes.71   4) Rituximab is a chimeric, human-murine 
mAb that depletes B-cells by binding to CD20. It is 
highly effective in treating RA patients especially 
those who do not respond to biologic anti-TNF-α 
agents.72,73 Emerging evidence indicates that rituximab 
substantially reduces autoantibody levels and bone loss 
in RA.74 Mechanistically, treatment of patients with 
rituximab decreases synovial osteoclast precursors and 
RANK-L expression and increases OPG/RANKL ratio 
in blood.75  5) Abatacept is a selective inhibitor of cognate 
T-lymphocyte interaction with antigen presenting cells. 
Clinical trials have shown that RA patients refractory to 
biologic anti-TNF-α agents respond well to abatacept 
and that the beneficial effects could be maintained 
for up to 3 years.76 Studies using dynamic contrast-
enhanced (DCE) MRI and arthroscopy-acquired 
synovial biopsies show 15-40% improvement in MRI 

parameters together with increased plasma level of 
OPG with reduced RANK-L.77 6) Tocilizumab is a 
mAb specific for IL-6 receptor (IL-6R) effective in RA 
patients refractory to biologic anti-TNF-α agents.78 

Recent evidence indicates that tocilizumab induces 
repair in erosions, particularly in large lesions with 
sclerosis.79 7) Anakinra is a recombinant human IL-1 
receptor (IL-1R) antagonist licensed for the treatment 
of RA. In clinical trials, anakinra significantly reduced 
radiographic progression and protected bone and 
cartilage from progressive destruction.80,81 

In conclusion, significant advances have been made 
in recent years in understanding molecular mechanisms 
that underpin changes in bone homeostasis leading to 
osteoporosis. These advances have led to the discovery 
and successful application of targeted therapeutic 
strategies using biological agents in the clinic. These 
advances have had profound impact on the clinical 
management of primary osteoporosis and RA. As a 
by-product of the discovery and application of targeted 
biological therapies in RA, there is now compelling 
evidence for an overlap between chronic inflammation 
and osteoporosis in RA. This overlap is not confined 
to periarticular osteoporosis, but extends to generalized 
osteoporosis that is associated with the disease. This 
knowledge together with advances in early diagnosis of 
RA is making significant inroads into preventing bone 
loss, fractures, and disability in patients. These advances 
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could ultimately lead to progress in knowledge-based 
personalized treatment for patients in the future.  
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