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ABSTRACT

البلعوم  لسرطان  الأساسية  العلاجات  من  الإشعاعي  العلاج  يعد 
الأوكسجين  العلاج بمحتوى  فعالية هذا  وترتبط مدى  الأنفي، كما 
بين  التفاعل  موازنة  يجب  بأنه  يعني  وهذا  السرطانية.  الخلايا  في 
وذلك  الورم  في  الأوعية  تولد  بمضادات  والعلاج  الإشعاعي  العلاج 
نتائجه.  وتحسين  العلاج  فعالية  زيادة  أجل  من  بينهما  الجمع  عند 
متمثلة  معقدة  آليات  العلاجين  هذين  بين  الجمع  عملية  وتتضمن 
الوعائية،  والجملة  السرطانية،  الخلايا  بين  التفاعلات  من  بالعديد 
وانتقاله  السرطاني  الورم  تضخم  مدى  ويعتمد  كما  الورم.  وسدى 
على عملية تولد الأوعية في الورم حيث يؤدي نمو الورم السريع إلى 
العلاج الإشعاعي. وتعمل  يقاوم  أن  الذي من شأنه  التأكسد  نقص 
مضادات تولد الأوعية على ضبط مجرى الدم في خلايا الورم، وضبط 
عملية التأكسد وذلك من خلال استهداف الجملة الوعائية السرطانية 
مما يؤدي إلى زيادة حساسية العلاج الإشعاعي. ونستعرض في هذا 
المقال مدى تأثير الجمع بين العلاج الإشعاعي والعلاج بمضادات تولد 
الأوعية في الورم على سرطان البلعوم الأنفي الانتقالي، بالإضافة إلى 

مراجعة الأبحاث التي تدعم مثل هذه الطريقة العلاجية الواعدة. 

Radiation therapy is the primary treatment in 
nasopharyngeal carcinoma (NPC), and the effect of 
radiation therapy is strongly related to the oxygen content 
of cancer cells. That means, it is imperative to balance the 
interactions between radiotherapy and anti-angiogenesis 
therapy when giving combination therapy to improve 
clinical outcomes. The complicated mechanisms 
between antiangiogenic agents and radiation involve 
many interactions between the cancer cells, vasculature, 
and cancer stroma. The proliferation and metastasis of 
cancer depends on angiogenesis, while rapid growth 
of cancers will cause hypoxia, which contributes to 
radioresistance. Antiangiogenic agents can modulate the 
cancer blood flow and oxygenation through target cancer 
vasculature, leading to increased radiosensitivity. This 
study discusses the mechanisms of the synergistic effect 
of the antiangiogenic therapy with radiation therapy in 
metastatic NPC, and reviews the data supporting this 
strategy as a promising treatment for metastatic NPC. 
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Nasopharyngeal carcinoma (NPC), as a malignant 
head and neck cancer, is known for its atypical 

early symptoms and high-metastatic potential. Unlike 
other malignant cancers, due to the complexity structure 
of the nose-pharynx ministry, the characteristics of 
invasive growth and radiosensitivity, radiotherapy is the 
first choice for NPC. With the incessant development 
and update of radiotherapy-associated equipment and 
technology, the effect of treatment in NPC has been 
improved greatly, but there still exists some patients who 
are not sensitive to radiation, and may lead to failures 
of treatment. Increasing the sensitivity of radiation 
and improving the local control rate are important 
approaches to enhance the curative effect of NPC. 
Radiotherapy combined with chemotherapy has been 
proven to increase the effect to some extent.1,2 But more 
novel targeting strategies are needed in order to improve 
outcome. In the past years, anti-angiogenesis therapies 
have showed a rapid ascent into clinical practice. 
Since angiogenesis is associated with advanced and 
metastatic cancers, it has its unique characters in cancer. 
Combining antiangiogenic agents and radiotherapy 
seems to be feasible. Here, we briefly summarize the 
effects of antiangiogenic agents added to radiotherapy 
in NPC, and explain the mechanisms under the current 
knowledge.
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Hypoxia-inducing factor 1-alpha and radiosensitivity 
of nasopharyngeal carcinoma. Like the repair of DNA 
damage, regulation of cell cycle, apoptosis, or others, 
the oxygenation state of cancer cells is one of the main 
factors that regulate cancer radiosensitivity. With further 
research of radiation biology, the influence of hypoxia 
of tissues or cells to radiosensitivity cannot be simply 
summarized as enhanced, or reduced. The mechanisms 
between them are very complicated, even paradoxical 
to some extent. On the one hand, hypoxia can result 
in reducing radiosensitivity. Radiation-induced DNA 
double strand breaks, which causes cell cycle arrest, 
and cell death is the main mechanism of radiotherapy. 
Meanwhile, as a potent radiosensitizer, oxygen can 
facilitate the production of free radicals, which is 
essential for the induction of radiation-associated DNA 
damage.3,4 That means, the growth of cancers, anti-
angiogenesis or other factors, which can result in a lack 
of adequate blood supply or oxygen for regions will lead 
to radiation resistance as the cancer microenvironment 
in hypoxia cannot promote radiation-induced DNA 
damage.5 On the other hand, hypoxic cancer cells 
are characterized by up-regulating HIF-1α, an 
important regulatory factor that enables cancer cells 
to endure a hypoxic microenvironment.6,7 The hypoxia 
tolerance includes regulating the induction of various 
transcription factors involved in tumor metabolism, 
invasion, cell death and angiogenesis, including the key 
angiogenic molecule vascular endothelial growth factor 
(VEGF).8,9 

It has been reported that the overexpression of 
HIF-1α in NPC correlates with carcinogenesis,10,11 

proliferation,7 and surviving,12 as well as with poorer 
prognosis,13 and advanced cancer stage,14 while HIF-1α 
and VEGF play roles in these modulation. The HIF-1α 
has also been found to have connections with radio 
resistance.3,15,16 Hosokawa et al16 showed that oral 
squamous cell carcinoma (OSCC) cells of high-level 
HIF-1α were resistant to radiation and HIF-1α involved 
in controlling short-term radiosensitivity of cells. Xu 
et al17 found that down-regulating the expression of 
HIF-1α and  osteopontin mRNA could radiosensitize 
the HNE-1 cell. As stated above, HIF-1α caused by 
radiation exposure can result in the up-regulation of 
VEGF, estimated glomerular filtration rate (EGFR) and 
others, followed by high levels of angiogenic growth 
factors, especially VEGF, endothelial cell survival can 
be increased, which may participate in radioresistance.18 
Meanwhile, an increased proliferation of cancer cells 
may result from the promotion or maintenance of 

cancer vascular system via up-regulated radiation-
induced VEGF.19,20 This may contribute to radiation 
resistance in many ways, including improved interstitial 
fluid pressure, or vascular permeability, increased 
oxygen consumption, and hypoxic microenvironment. 
There is also evidence to support that HIF-1α can 
enhance the sensitivity of radiation. The HIF-1α can 
promote cell cycle arrest and apoptosis to enhance 
cellular radiosensitivity.21,22 However, recently Sendoel 
et al23 reported HIF-1 could antagonize p53-mediated 
apoptosis through a secreted neuronal tyrosinase. The 
outcomes will vary from different conditions. Oike 
et al24 found that the expression of HIF-1α did not 
contribute primarily to the radiosensitivity of lung 
adenocarcinoma cells under acute hypoxia. At present, 
most scholars support that increasing HIF-1α can 
result in radiation resistance, while silencing HIF-1α 
contributes to an increased radiosensitivity.16,25

Vascular endothelial growth factor and its role in 
nasopharyngeal carcinoma. The VEGF, known as a 
potent promoter for angiogenesis, plays a primary role 
in the formation of new blood vessels. Its role in NPC 
has also been well established.26 There are 7 ligands of 
VEGF family, including VEGF A-E. The VEGFR-1/2, 
which are primarily involved in angiogenesis is known 
to bind VEGF A-D and PLGF.27 The VEGF-C and 
VEGF-D were also found to bind to VEGFR-3, which 
is involved in lymphatic metastasis. Previous reports 
indicate that VEGF, especially VEGF-A can bind to 
2 receptor tyrosine kinases (VEGFR-1/2) to promote 
endothelial cell differentiation, proliferation, migration, 
and induction of matrix metalloproteinase (MMPs). 
Signaling pathways, such as phosphatidylinositol-3-
kinase/Silk threonine protein kinase (PI3K/AKT)  and 
Ras/Mitogen-activated protein kinase (Ras/MAPK) was 
also activated to help with endothelial cell survival.18

In NPC, VEGF-inducted MMPs not only 
participate in the formation of new blood vessels 
though degrading endothelial extracellular matrix, 
but also regulate the invasion and metastasis of cancer, 
leading to a progression of NPC.28,29 In addition, it was 
reported that VEGF has a strong connection with varied 
regulatory factors, which are involved in angiogenesis. 
Chen et al30 indicated that the effects of angiopoietin-2, 
which can maintain the mature blood vessels, highly 
rely on the level of VEGF expression. Chen et al30 
found that Celecoxib, an inhibitor of cyclooxygenase-2 
-2, has the ability to inhibit the capacity of invasion, 
suppress the level of VEGF-A expression, and enhance 
radiosensitivity in NPC.31 Thus, these could be effective 
targets to inhibit angiogenesis for the treatment of NPC. 

http://www.smj.org.sa/index.php/smj/index
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Anti-angiogenesis combined with radiation in 
nasopharyngeal carcinoma. As the angiogenesis plays 
an important role in the progress of cancer, targeting 
angiogenesis agents will be a significant part of the 
treatment of NPC. Recently, the treatment of anti-
angiogenesis combined with radiation has been used in 
clinical trials, and it has some effects. Bevacizumab had 
been used in the clinical trial of Head Neck Squamous 
Cell Carcinoma (HNSCC), and the results showed that 
combined therapy was feasible.32,33 Lee et al34 followed-up 
46 NPC patients, and found that adding bevacizumab 
to standard chemoradiation treatment was feasible. The 
estimated 2 year locoregional progression-free interval 
was 83.7% (95% confidence interval [CI]: 72.6-94.9), 
2 year distant metastasis-free interval was 90.8% (95% 
CI: 82.2-99.5), 2 year progression-free survival was 
74.7% (95% CI: 61.8-87.6), and 2 year overall survival 
90.9% (95% CI: 82.3-99.4). Bevacizumab may delay 
the progression of subclinical distant disease.34 Elser et 
al35 evaluated 27 patients and determined the efficacy 
and safety of sorafenib, which could inhibit the growth 
and angiogenesis of cancer in NPC. They found the 
median time of progression was 1.8 months (95% CI: 
1.6-3.4 months), and overall survival was 4.2 months 
(95% CI: 3.6-8.7 months). While fatigue, mucositis, 
lymphopenia, anemia, and hand-foot skin reaction 
were the most common toxicities.35,36 Xue et al37 found 
that it was tolerable and feasible for a combination of 

sorafenib, cisplatin (80 mg/m2), and 5 fluorouracil (FU) 
(3000 mg/m2) in NPC recurrent or metastatic, but 
then requires further randomized trials. Huang et al38 
reported that sorafenib and sunitinib could markedly 
increase the cytotoxic sensitivity of cancer cells to 
natural killer cells by up-regulating NKG2D ligands. 

In mouse models, it had been reported that the 
function of radiation in antitumor and antiangiogenesis 
could significantly increase in NPC by Endostar™ 
(rh-endostatin, YH-16) (a new recombinant human 
endostatin developed by Medgenn Bioengineering 
Co. Ltd., Yantai, Shandong, China), while promoting 
apoptosis of endothelial cells and cancer cells, increasing 
hypoxia of cancer cells, and changing proangiogenic 
factors that contributed to it.39 Zhou et al40  found that 
by Endostar significantly inhibited the growth of NPC 
cells, the cancer inhibition rates of Endostar + radiation 
was 86.1%, Endostar  was 27.1%, and radiation 
was 60.5%. Additional, Endostar  could enhance 
the radiosensitivity of NPC cells by lowering VEGF 
expression. Zhou et al41 had a similar conclusion. Peng et 
al42 also found that Endostar  is involved in normalizing 
tumor vasculature, which could lead to alleviating 
hypoxia, and sensitizing the antitumor effect of radiation. 
The increase of pericyte coverage in NPC tumor vessels 
by the up-regulated PEDF and down-regulated VEGF 
might play a role in this.42 In addition to the phase II 
trial, the efficacy and safety of Endostar combined with 
gemcitabine and cisplatin chemotherapy in metastatic 

Table 1 - The effect of radiation for nasopharyngeal carcinoma cells.

Stage Cancer blood vessels Cancer oxygen 
supply

Cancer 
radiosensitivity

Influence of cancer

Initial period Normal or little impairment Normal or little 
reduction

High Kills cancer cells effectively

Interim Increases the levels of angiogenic 
growth factors by HIF-1α

Reduced Reduced The ability of radiation to kill 
cancer cells is reduced

Late period Serious damage Low Low -
HIF-1α - hypoxia inducing factor 1 alpha 

Table 2 - The effect of antiangiogenic therapy for nasopharyngeal carcinoma cells in radiation.

Stage Cancer blood vessels Cancer oxygen 
supply

Cancer 
radiosensitivity

Influence of cancer

Initial period Inhibit the angiogenesis of cancer Normal or little 
reduction

High Kill cancer cells effectively; 
reduce the supply for cancer cells

Interim Against the effect of endothelial cells 
survival; maintain temporary vascular 

normalization

Improved Reduce the 
radioresistance

Improves the ability of radiation to kill 
cancer cells

Late period Reduce the blood vessels strongly Low - The supply is not enough to meet the 
growth or recurrence of cancer cells

http://www.smj.org.sa/index.php/smj/index
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NPC was determined. Twenty-eight patients were 
included for evaluation. The median progression-free 
survival (PFS) was 19.4 months (95% CI: 13.6-25.1 
months). The confirmed objective response rate was 
85.7% (95% CI: 66.4-95.3%) including complete 
response in 14 patients (50%). The one-year PFS rate 
was 69.8%, and the one-year overall survival rate was 
90.2%. The most common grade 3/4 adverse events 
were neutropenia (46.4%), and thrombocytopenia 
(14.3%). This indicated that Endostar combining with 
gemcitabine and cisplatin chemotherapy would be a 
potential treatment for NPC.43

The mechanism by which the combined treatment 
has an effect is complicated. On one hand, the 
formation of cancer blood vessels would be inhibited 
by targeting VEGF and other targets, as a result, 
cancer blood supply is insufficient to meet the needs 
of growth and metastasis, and resulted in an inhibition 
of cancer progress. Meanwhile, VEGF/VGFR can 
also activate signaling pathways, such as Ras/MAPK, 
and PI3K/AKT pathways to promote endothelial cell 
proliferation and survival.18,44 Thus, endothelial cells 
are easily damaged, and the radiosensitivity will be 
increased by targeting VEGF/ VGFR. Then in terms 
of the paradoxical effect that hypoxia caused by anti-
angiogenesis will reduce the sensitivity of radiation, the 
theory of vascular normalization window can explain 
it.42,45,46 Antiangiogenic therapy can induce a specific 
‘‘vascular normalization window’’. During this time, 
the function, structure of cancer blood vessels, and 
microenvironment temporarily become normalized, 
meaning the interstitial fluid pressure is decreased, and 
blood perfusion is increased. As a consequence, the 
anticancer drugs can easily penetrate into the cancers; 
in addition, hypoxia will be temporarily overcome 
and leads to more DNA damage, cell death, and high 
sensitivity of radiotherapy by producing more free 
radicals. Thus, administering radiotherapy during the 
window period is the key to improve the antitumor 
efficacy. The effect of radiation for NPC is summarized 
in Table 1, and the effect of antiangiogenic + radiation 
for NPC is summarized in Table 2.

In conclusion, due to the characteristics of NPC, 
radiotherapy is the main means of treatment. However, 
the single treatment often cannot meet the need of 
the expected goal, and combination therapy is a trend 
for NPC. Anti-angiogenesis, as the main mechanism 
for blocking the supply of tumor cell growth is a 
promising treatment for NPC. A high expression of 
HIF-1α is often induced by radiation, and it regulates 
the radiosensitivity by modulating the expression of 

VEGF, or other signaling pathways. Moreover, the 
vascular normalization window in anti-angiogenesis 
is considered to be an important factor for the 
promotion of cancer radiosensitivity. Therefore, the 
combined therapy does not equate a simple addition 
of the 2 therapies. More research is needed to obtain 
a better understanding of the interactive effect. It was 
found that combining anti-angiogenic therapy with 
radiotherapy has a clinical value in improving the effect 
of NPC, but of note, the number of patients in trials is 
still low, and more specimens are needed to confirm the 
outcomes. Considering the importance of the vascular 
normalization window in such treatment, some issues, 
such as the formative time and duration of the vascular 
normalization, whether the normalization relies on the 
dose, or type of drugs is worth  further study. In addition, 
to inhibit the formation of new blood vessels, targeting 
the existing blood vessels and reducing its function is 
also involved in antiangiogenic therapy.47 Radiotherapy 
combined with antiangiogenic is a promising model 
for NPC treatment. Considering  various factors, such 
as the type of drugs, delivery time, dose, and the type 
of ray,48 and a reasonable therapy scheme are critical to 
improve the effect of NPC.
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