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ABSTRACT

نوية،  في  منتشر  الوظائف  متعدد  بروتين  النوكليولين  يعد 
الحمض  نسخ  ذلك  في  بما  التحويرات  من  العديد  في  ويشارك 
يظهر  الريبوسوم.  وتجمع   RNA الغذائي  والتمثيل  النووي 
نوكليولين أيضاً في السيتوبلازم وعلى غشاء الخلية، ويمكن ربط 
سطح نوكليولين بروابط مختلفه تؤثر على العديد من الوظائف 
الفسيولوجية. التعبير وتوطين النوكليولين في كثير من الأحيان 
غير طبيعي في أمراض السرطان، والتوزيع المتفاوت للنوكليولين 
وورم  وبقاءوه  السرطان  انتشار  على  تؤثر  أن  السرطان يمكن  في 
السرطان.  تطور  إلى  بذلك  مؤدياً  الخبيث  السرطانية  الخلايا 
وبالتالي، قد يكون نوكليولين هدف واعد وحديث لعلاج مضاد 
في  النوكليولين  عمل  كيفية  ونوصف  هنا  نستعرض  للسرطان. 

تطور السرطان ووصف أدوية نوكليولين المضادة للسرطان.

Nucleolin, a multifunctional protein distributed 
in the nucleolus, participates in many modulations 
including rDNA transcription, RNA metabolism, 
and ribosome assembly. Nucleolin is also found 
in the cytoplasm and on the cell membrane, and 
surface nucleolin can bind to various ligands to 
affect many physiological functions. The expression 
and localization of nucleolin is often abnormal in 
cancers, as the differential distribution of nucleolin in 
cancer can influence the carcinogenesis, proliferation, 
survival, and metastasis of cancer cells, leading to the 
cancer progression. Thus, nucleolin may be a novel 
and promising target for anti-cancer treatment. Here, 
we describe how nucleolin act functions in cancer 
development and describe nucleolin-dependent anti-
cancer therapies.
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Nucleolin, or called C23, is one of the most 
abundant proteins in the nucleolus, as it accounts 

for approximately 10% in the protein content in the 
nucleolus. It has been confirmed that nucleolin is 
involved in the remodeling of nucleolar chromatin, 
maturation of pre-RNA, rDNA transcription and 
ribosome assembly.1 Nucleolin also plays significant roles 
in many physiological processes such as modulating the 
proliferation, survival and apoptosis of cells, especially 
in cancer cells.2 Meanwhile, nucleolin on the cell surface 
has been found in various cancers and can specifically 
bind to ligands to regulate the progression of cancer. 
Thus, nucleolin may be a novel target in studying 
cancer progression and developing cancer diagnostics 
and therapies. Here, we briefly present the effects of 
nucleolin in cancer and in anti-cancer therapy. 

The structure and function of nucleolin. Nucleolin 
has 3 main structural domains: the N-terminal 
domain (rich in acidic regions and containing multiple 
phosphorylation sites); the central domain (contains 4 
RNA binding domains [RBDs]) and the C-terminal 
domain (rich in glycine, arginine and phenylalanine 
residues). The N-terminal domain participates in 
the rRNA transcription, and has interactions with 
components of the pre-rRNA processing complex. 
The central domain modulates the interactions with 
mRNAs and pre-rRNA. The C-terminal domain can 
interacts with target mRNAs/proteins.

Nucleolin is mainly distributed in the nucleus and is 
involved in many modulations of cellular progression. 
Some studies indicated that nucleolin might be 
necessary to controlling the transcriptional states of 
rDNA. Nucleolin also can affect the turnover and 
transcription of mRNA both positively and negatively 
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through binding to different components of mRNA. 
Evidences have suggested that the binding of nucleolin 
to the mRNA 5’ UTR often suppresses translation, while 
binding to the 3’ UTR enhances mRNA translation. It is 
well known that aberrant splicing of mRNA precursors 
results in the production of abnormal proteins. Das et 
al3 showed that nucleolin interacted with some mRNAs 
or spliceosomes that could regulate the alternative 
splicing. Moreover, nucleolin has multiple roles in 
the process of ribosome biogenesis steps, including 
RNA polymerase (Pol) I transcription, processing 
of pre-rRNA and ribosome assembly.4 Turner et al5 
demonstrated that nucleolin could facilitate the first 
processing step of pre-rRNA occurring at the 5’ external 
transcribed spacer (5’-ETS), and lead to cleavage of the 
precursor transcript of rRNA.5 Nucleolin RBDs were 
reported to bind to a stem-loop structure of RNA and 
worked as a chaperone to facilitate the proper folding 
of pre-rRNA.

More than 90% of nucleolin is found in the nucleolus, 
nucleolin also has been found in the cytoplasm and on 
the cell surface. The shuttling of nucleolin between the 
nucleus, cytoplasm and plasmalemma is significant for 
normal nucleolin functions. Meng et al6 indicated that a 
decrease of cell-surface nucleolin expression, or activity 
would inhibit the growth of cancer cells and trigger 
the apoptosis in endothelial cells. Surface-nucleolin 
participates in many pathways, or processes via binding 
to various ligands including DNA, RNA, and proteins.

Nucleolin in cancer. Some evidence has suggested 
that the expression and localization of nucleolin is 
abnormal in cancer. Dysregulated accumulation of 
nucleolin mRNA and protein is found in a diverse 
range of cancers, and the level of surface nucleolin 
in cancers is much higher than in normal cells.7 The 
elevated expression of nucleolin is associated with a 
worse prognosis of cancer patients, and the presence of 
nucleolin on the cell surface increases the malignancy 

of cancer and modulates the metastasis. Thus, nucleolin 
is believed to facilitate the processes that affect the 
fate of cancer cells (the effect of nucleolin for cancer is 
summarized in Table 1).

Nucleolin in carcinogenesis. The dysregulation of 
cancer-related genes, or their pathways is an important 
factor for the transformation of normal cells to cancer 
cells; once a structural or regulatory abnormality occurs, 
the resulting products, or activity will accelerate the 
formation of cancer.

Most cancers have character with aberrant 
centrosome numbers, which can cause aneuploidy and 
result in the formation of cancer cells.8 In interphase and 
during mitosis, nucleolin is found in the surrounding 
region including the vicinity of the outer kinetochore 
of chromosomes, as it is associated with spindle poles. 
Further studies showed that depletion of nucleolin 
could induce the amplification of immature centriole 
markers and a disorganization of the microtubule 
network. Nucleolin depletion also caused improper 
kinetochore attachments, and reduced tension and 
syntelic attachments.1 There are a number of signaling 
pathways, such as the transforming growth factor β 
(TGF-ß) pathway and epidermal growth factor (EGF) 
pathway that are involved in oncogenesis. Lv et al9 
revealed that surface nucleolin could promote and 
regulate the TGF-ß pathway via the interaction with 
TGF-beta receptor I (TβR-I) in glioblastoma cells, 
and that nucleolin was required for the initiation and 
activation of the TGF-ß pathway.9 Similarly, it has also 
been shown that nucleolin regulated the activation of 
epidermal growth factor (EGF)-induced ERK signaling 
and the PI3K-AKT pathway by interacting with EGFR, 
which could obviously affect the growth, viability, 
colony formation ability, and invasiveness of cancer 
cells.10 

Moreover, there exist some high-risk factors/
promoters for cancer initiation, and nucleolin is 

Table 1 - The effects of nucleolin in cancers.

Stage Effect Mechanism
Carcinogenesis Facilitate Promote and regulate the oncogenesis-related TGF-β pathway and EGF pathway. 

Regulate high-risk promoters of cancer initiation.
Proliferation and survival Facilitate Interact with DNA repair proteins to maintain DNA stability.

Regulate the stability of apoptosis-related mRNAs to enhance anti-apoptosis.
Bind to apoptosis-related ligands to prevent apoptosis.

Infiltration and metastasis Facilitate Regulate the process of EMT and the expression of MMPs.
Modulate the initiation and transduction of EGFR and CXCR4 signaling.

Angiogenesis Facilitate Up-regulate the level of VEGF and HIF1a.
TGF-ß  - transforming growth factor ß, EGF - epidermal growth factor, EMT - epithelial mesenchymal transition, VEGF - vascular endothelial growth 

factor, MMPs - modulates matrix metalloproteinases, EGFR - epidermal growth factor receptor, CXCR4 - chemokine receptor type 4, 
HIF1a - Hypoxia-inducible factor 1alpha 
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involved with these regulators. For instance, gastrin 
is highly expressed in malignancies such as pancreatic 
cancer and colorectal cancer. Nucleolin is required to 
maintain the stabilization of gastrin related mRNA. 
Human papilloma virus (HPV) is associated with a high 
frequency of cervical carcinogenesis, and Sato indicated 
that nucleolin could bind to plasmids containing the 
tHPV16 genomic region in cancer cells, which is related 
to the stable maintenance of the HPV16 genome.11 
Tumor necrosis factor (TNF)-a-inducing protein 
(Tipa), release from Helicobacter pylori (H. pylori), 
can strongly induce the expression of TNF-a and 
chemokine genes by mediating NF-κB activation in 
stomach cancer cells, leading to the development of 
cancer in human stomachs infected with H. pylori.12 

Watanabe et al13 revealed that surface nucleolin acted 
as a receptor for Tipa through binding of HB-19 
to the RGG domain at the C-terminal region and 
shuttled Tipa from the cell surface to the cytosol and 
nuclei. It has been found that overexpression of the 
interleukin-9 (IL-9) receptor occurs in several types of 
human leukemias. Shang et al14 confirmed the increased 
localization of nucleolin in the nuclei of TL cell lines 
(which have elevated expression of the IL-9R gene 
(Il9r), which suggests that nucleolin might favor IL-9R 
transcription during leukemogenesis.

Nucleolin in cancer proliferation and survival. 
Cancer cells often have characteristically increased 
proliferation, often to the point without limits. During 
this event, nucleolin can safeguard the stability of 
genome and limit DNA damage accumulation due to 
rapid proliferation, leading to high levels of protein 
synthesis that can benefit the elevated proliferation rate 
of cancer. 

Under stress conditions (namely, heat shock or 
radiation), nucleolin can redistribute from the nucleolus 
to the nucleoplasm, and the relocalization will increase 
the formation of nucleolin-replication protein A (RPA) 
complex. Because RPA is an important ssDNA-binding 
protein during the initiation and elongation stages of 
DNA replication, this complex would sequester RPA 
and block the function of RPA during DNA replication. 
With the sequestration of nucleolin and other factors, 
the conditions allow for the maintenance of genome 
stability via transiently delaying cell proliferation to 
support the activation of DNA repair machinery. 
Nucleolin also interacts with DNA repair proteins such 
as PCNA and gH2AX15 to promote nucleolin-related 
DNA repair. De et al16 indicated that nucleolin and 
Rad51 were involved in the pathway of homologous 
recombination repair and that nucleolin might regulate 

the DNA repair activity of Rad51.16 Nucleolin is also 
involved in the regulation of telomerase maintenance. 
It was confirmed that nucleolin interacts with telomeric 
repeats (TTAGGG) and the human telomerase reverse 
transcriptase subunit (hTERT). The binding of 
nucleolin to the active telomerase complex via protein-
protein and protein-RNA interactions may regulate the 
function of telomerase.2

Meanwhile, cancer cells have a low apoptosis rate. 
Nucleolin can regulate the stability of apoptosis-related 
mRNAs by the binding of nucleolin RBD to the 5’ and 
3’UTR of mRNAs and enhance the anti-apoptosis. It 
has been reported that increased nucleolin expression 
could elevate the levels of BCL-2 in cancer cells by 
the specific binding of nucleolin to AU-rich elements 
(AREs) in the 3’UTR of BCL-2 mRNA, which protects 
the mRNA from degradation.17 Nucleolin also interacts 
with 15a and 16 miRNAs, which are negative regulators 
of BCL-2 expression, to control their maturation 
process.18 Moreover, nucleolin can reduce the translation 
of p53 by associating with the 5’ UTR of TP53 mRNA 
and enhance the translation of AKT1 and cyclin I (pro-
survival proteins) via binding to their mRNA.19 

Surface nucleolin has gained increasing attention 
due to its roles in many physiological modulations. 
Wise et al20 showed that cell-surface nucleolin could 
bind to Fas and block the interaction of Fas/FasL, which 
prevents cells from entering Fas-induced apoptosis.20 

The interaction of surface nucleolin with ErbB1 and 
Ras21 also favor cell proliferation. Therefore, nucleolin 
can facilitate an anti-apoptotic phenotype and induce 
the initiation and survival of cancer.

Nucleolin in cancer infiltration and metastasis. 
During the progression of cancer, cancer cells will 
break away from cancer tissue, and intrude into and 
drift in the circulation before implanting in novel 
regions. It is well known that cancer cells can undergo 
epithelial mesenchymal transition (EMT) to enhance 
their metastatic potential. Some studies implied 
that the disturbance of nucleolin could inhibit the 
process of EMT. For instance, transfecting cells with 
nucleolin-targeted small interfering RNA could result 
in the inhibition of the EMT phenotypes.22 Yang et 
al23 showed that si-nucleolin treatment attenuated 
the BMP2-induced expression of p-Erk1/2, p-Akt, 
vimentin, N-cadherin, and MMP2, leading to decreased 
migration and invasion of gastric cancer cells. Nucleolin 
also modulates matrix metalloproteinases (MMPs). Hsu 
et al24 found the nucleolin was observably cleaved to 
form C-terminal truncated nucleolin (TNCL) in lung 
cancer, TNCL could increase the expression of MMP9, 
anaplastic lymphoma kinase (ALK), and HIF1a as well 
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as decrease the expression of cancer suppressors by 
regulating mRNA stability via binding to the 3′ UTR.24 

Qi et al25 indicated that nucleolin was extensively 
located in the nucleus, cytoplasm and cell membrane 
in esophageal squamous cell carcinoma (ESCC) tissues 
with metastasis, while nucleolin was merely confined 
to the nucleus in tissues without metastasis. Nucleolin 
was implicated in the migration and invasion of ESCC 
cells via modulation of the initiation and transduction 
of EGFR and CXCR4 signaling. Similarly, Dai et al26 
showed that nucleolin was crucial in the activation 
of CXCR4 signaling, which affected the growth, 
migration, and invasiveness of cancer cells. Studies also 
found that nucleolin participated in the initiation of the 
CCR6 pathway to modulate the adhesion, migration, 
and invasive of hepatocellular carcinoma cells that the 
expression of nucleolin, and CCR6 in cancer patients 
was associated with advanced stage, lymph node 
metastasis, and a poor 5-year prognosis.27

Nucleolin in cancer angiogenesis. Angiogenesis 
is an essential factor for cancer progression, as it not 
only provides the blood supply to the cancer locus, but 
also offers more opportunities for metastasis. Recent 
findings showed nucleolin played a significant role in 
angiogenesis. Nucleolin can affect cancer angiogenesis 
by modulating the levels of blood vessel-related factors. 
It has been indicated that over-expression of nucleolin 
up-regulated the expression of vascular endothelial 
growth factor (VEGF) via interacting with the G- and 
C-rich sequences of the VEGF promoter.28 Nucleolin 
also could bind to the G-quadruplex structure in the 5’ 
UTR of HIF1-a mRNA, and the inhibition of nucleolin 
led to decreased HIF1a protein, and mRNA levels.29 
However, Zhuo et al30 demonstrated that surface 
nucleolin on cancer cells, and angiogenesis-related 
endothelial cells had a high affinity to endostatin, 
thus, nucleolin inhibition might result in the anti-
angiogenesis caused by endostatin. 

Surface nucleolin can be used as a transport protein 
to transfer regulatory factors from the cell surface 
to the nuclei, or nucleoli. Acharan sulfate (AS), an 
anti-tumor and anti-angiogenesis glycosaminoglycan, 
has a strong affinity specifically to surface nucleolin in 
lung adenocarcinoma cells; after binding to nucleolin, 
AS can be absorbed into the cytoplasm via nucleolin.31 
Interestingly, VEGF can regulate the relocation of 
nucleolin. Wu et al32 indicated that VEGF expression 
was correlated with nucleolin distribution in colorectal 
carcinoma clinical samples that VEGF could promote 
the phosphorylation and relocation of nucleolin 
through the PI3K/Akt pathway in cancer cell lines. 

Nucleolin in anti-cancer therapy. Nucleolin is a 
remarkable target for cancer therapy given its higher 
abundance, selective presence on plasma membrane, and 
multifaceted influence on initiation, and progression 
of cancer. A number of studies have indicated that the 
proliferation and progression of cancer cells would 
be inhibited by suppressing or blocking nucleolin. 
Meanwhile, owing to its affinity and specific binding to 
extracellular ligands, cell-surface nucleolin may act as a 
novel delivery system in cancer therapies.

Nucleolin-based siRNA and microRNA treatment.
siRNA and miRNA can modulate the expression 
of proteins by silencing specific genes, and binding 
to target mRNAs. Thus, the abnormal expression 
levels of nucleolin might be decreased via siRNA, or 
miRNA. Many efforts have been made to develop 
an siRNA-based therapy; for example, Xu et al33 
found that the decrease of nucleolin expression via 
siRNA-mediated knockdown resulted in an obvious 
reduction in the proliferation of glioblastoma cells and 
induced cell cycle arrest in vitro. Decreased nucleolin 
expression also caused a dramatic decrease of tumor 
size in an intracranial xenograft model. Wu et al34 
showed that antisense phosphorothioate-modified 
oligodeoxynucleotides (S-ODNs) directed at nucleolin 
mRNA could trigger the apoptosis of nasopharyngeal 
carcinoma (NPC) cells and that S-ODN treatment 
would result in the suppression of NPC growth in 
tumor xenografts. It was also reported that upon binding 
of miRNA-494 to nucleolin, nucleolin expression was 
inhibited and led to an obvious reduction of cancer 
cell survival.35 Upon treating lung cancer cells with 2 
nucleolin aptamer siRNA chimeras (aptNCL-SLUGsiR 
and aptNCL-NRP1siR), Lai et al36 found the aptNCL-
siRNA could specifically and significantly knock down 
the expression of SLUG and NRP1 by nucleolin-
mediated endocytosis; furthermore, this combination 
treatment also suppressed the growth, invasiveness and 
angiogenesis of cancer in a xenograft mouse model 
without affecting the functions of the liver, or kidney. 

Nucleolin-based anti-cancer aptamers. An aptamer 
is single and short nucleic acid sequence, either DNA or 
RNA that can specifically target cellular and extracellular 
targets with high affinity. The aptamer AS1411, an 
unmodified guanosine (G)-rich oligonucleotide (5’-d 
GGT GGT GGT GGT TGT GGT GGT GGT 
GG-3’), has a high affinity for nucleolin and can bind 
to cell-surface nucleolin, then be internalized. The 
binding of AS1411 to nucleolin will disturb nucleolin-
related modulations. In a phase II single-arm study, 35 
metastatic renal cell carcinoma (RCC) patients were 
administered AS1411, but only one patient (2.9%) 
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had a response to treatment; however, the response 
was dramatic (84% reduction in cancer burden by 
RECIST 1.0 criteria) and durable (patient remains 
free of progression 2 years after completing therapy). 
Approximately 34% patients experienced AS1411-
related side effects, but they were mild or moderate.37 
Although AS1411 can be uptaken directly, the 
efficiency is not very high. Malik et al38 showed that 
AS1411-linked gold nanospheres (AS1411-GNS) were 
superior with regard to cell uptake and markedly showed 
increased anti-proliferative/cytotoxic effects compared 
to AS1411. An AS1411-GNS also completely inhibited 
cancer growth without signs of toxicity.38

Owing to the specific binding of AS1411 to 
nucleolin, AS1411 may work as promising delivery 
system in anti-cancer treatments. Li et al39 used an 
AS1411-PEG-liposome/siRNA complex in a melanoma 
cancer xenograft mice and discovered remarkable 
silencing activity and inhibition of growth in cancer 
cells. Alibolandi et al40 showed that AS1411-GEM-NPs 
could enhance the inhibitory effect on proliferation 
in lung cancer cells overexpressing nucleolin. Liao et 
al41 demonstrated that AS1411/doxorubicin (DOX)/
liposomes could obviously increase the intercellular 
accumulation of DOX compared to treatment with 
either free DOX or liposomes in a DOX-resistant 
breast cancer xenograft mouse model, resulting in an 
inhibition of cancer growth and a reduction of side 
effects. The combination of AS1411-functionalized 
composite micelles increased DOX accumulation 
in breast cancer cells and decreased cardiotoxicity.42 

Similarly, the AS1411-related polymeric nanosystem 
also can function as a potential drug delivery mechanism 
against various cancers such as ovarian, pancreatic, and 
lung cancer.43

Nucleolin-based anti-cancer peptides. Except for 
nucleic acid-dependent therapy, peptides also can be 
significant anti-nucleolin drugs in cancer therapy. 
HB-19 is a synthetic multimeric pseudopeptide that 
can bind to surface nucleolin. Once bound with HB-19, 
the organization of the existing 500 kDa complex in 
surface nucleolin can be changed and interfere with the 
native functions of surface nucleolin. Some findings 
showed that HB-19 could inhibit adhesion or spreading 
in epithelial tumor cells.44 In a xenograft mouse model, 
Destouches et al45 found that HB-19 treatment could 
markedly suppress the progression of established 
breast cancer cells; in some cases, it even eliminated 
measurable cancers while displaying no toxicity to 
normal tissue. Krust et al44 indicated that HB-19 
restored the contacted inhibition and impaired the 
growth of rhabdoid tumor-derived G401 cells, while the 

restoration of contact inhibition in HB-19-treated cells 
is related to an obvious decrease of transcripts coding the 
Wilms’ tumor 1 gene, MMP-2, the epithelial isoform of 
CD44, and VEGF.46 Similarly, N6L, another synthetic 
peptide targeting surface nucleolin, also displayed 
anti-proliferative activities, enhanced apoptosis, and 
decreased angiogenesis in cancers.47 

In conclusion, the level and localization of nucleolin 
is aberrant and contributes to the progression of cancer, 
including carcinogenesis, proliferation, angiogenesis, 
and metastasis. Thus, nucleolin is a promising target for 
anti-cancer therapy. Although some achievements have 
been gained, there are many challenges. First, due to the 
mechanisms of controlling nucleolin abundance and 
relocation, the interactions of surface nucleolin with 
ligands are poorly understood, and nucleolin-related 
drugs are very restricted. A better understanding of those 
mechanisms is needed. Secondly, cell-surface nucleolin 
in cancers may be a specific marker for drug delivery, 
but whether cell-surface nucleolin in cancer cells has an 
obvious distinction from normal cells remains unclear. 
Thus, analyzing the molecular activities of cell-surface 
nucleolin and the distribution of nucleolin in cells is 
requisite. Most of the studies of nucleolin-targeted 
treatments are still at the cellular and animal stages, and 
more clinical trials are required to verify the safety and 
effectivity of these therapies. In summary, nucleolin 
is very promising target for anti-cancer therapy and is 
worth intensive further study.
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