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ABSTRACT
 

الأهداف: خلصت هذه الدراسة بمجموعة من الأهداف ذات الأهمية والتي تتمثل 
باستخراج ميزات راديومكس الإشعاعي من صور الأشعة المقطعية المصاحبة والغير 
عن  فضلًا  للحنجرة،  الشريانية(  والمرحلة  الوريدية  )المرحلة  للصبغة  مصاحبه 
عمل التحليلات الكمية باستخدام أنواع الصور الثلاثة المصاحبة و الغير مصاحبة 
للصبغة من أجل التفريق بين سرطان الخلايا الحرشفية وتضخم الخلايا الحرشفية في 
الحنجرة، إضاقة إلى ذلك، تم تقييم دقة نموذج راديومكس الاشعاعي المقترح بناء 

على أنواع الصور المقطعية الثلاثة التي تم بنائها في هذه الدراسة.

المنهجية: أما فيما يتعلق بالطرق و الأدوات: فقد تم اختيار مئة مريض بأثر رجعي 
من المصابين الذين يعانون من سرطان الحنجرة، تم فصل المرضى الي مجموعتين هما 
مجموعة التدريب و تتكون من 70 حالة و مجموعة التحقق تتكون من 30 حالة، 
 The Artificial Intelligence Kit ( تم استخدام برنامج الذكاء الاصطناعي
software )A.K. software( ( لاستخراج ميزات راديومكس الاشعاعي من 
صور الاشعه المقطعية. تمت معالجة و فلترة جميع الميزات باستخدام طرق )لاسو و 
م ر م ر(، mRMR و LASSO. وبذلك، تم تقييم نموذج راديومكس الإشعاعي 
باستخدام  المنحنى  تحت  المساحة  و  الحساسية  الخصوصية،  الدقة،  قيم  على  بناء 

.R-studio برنامج

والخصوصية،  التشخيص،  دقة  قيم  أن  إذ  مهمة  كانت  الدراسة  نتائج  النتائج: 
والقيمة التنبؤية الإيجابية، والقيمة التنبؤية السلبية، والمساحة تحت المنحنى التي 
تم الحصول عليها لمجموعة التدريب 0.91 ،0.9، 0.93، 0.9و 0.96 على التوالي 
المصاحبه  غير  المقطعية  للأشعة  وبالنسبة   .)CTA( الشريانية  المقطعية  للأشعة 
للصبغة )CTN( فقد كانت نتائجها 0.93، 0.93، 0.95، 0.90 و0.96 على 
التوالي. أما الأشعة المقطعية الوريدية )CTV( كانت نتائجها 0.92 ، 0.87 ، 
من  بعد  فيما  القيم  هذه  تأكيد  تم  بالتالي  التوالي.  على   0.96 و   0.96  ،  0.91
خلال مجموعة التحقق من الصحة التي تم استخدامها للتأكيد على النتائج التي تم 

الحصول عليها فيما قبل. 

الخلاصة:  فقد جاءت هذه الدراسة بخلاصة ذات أهمية مفادها إن نموذج التنبؤ 
القائم على راديومكس الإشعاعي المقترح في هذه الدراسة استطاع التمييز بنجاح 
تقنيات  باستخدام  الحنجرة  داخل  تضخمها  من  الحرشفية  الخلايا  سرطان  بين 
التصوير المقطعي التي تم تاسيسها في هذه الدراسة، مما يؤدي إلى تطوير التشخيص 

قبل الجراحة على أساس المؤشرات الحيوية المحددة والأنماط الظاهرية للسرطان.

Objectives:  To differentiate squamous cell hyperplasia 
(SCH) (benign) from squamous cell carcinoma (SCC) 
malignant) using textural features extracted from CT 
images and thereby, facilitate the preoperative medical 
diagnosis and treatment of throat cancers without the 
need for sample biopsies.

Methods: In total, 100 throat cancer patients were 
selected for this retrospective study. The cases were 
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collected from the Second Hospital of Jilin University, 
Changchun, China, from June 2017 to January 2019. 
The patients were separated into a training and validation 
cohort consisting of 70 and 30 cases, respectively. The 
Artificial Intelligence Kit software (A.K. software) was 
used to extract the radiomics features from the CT 
images. These features were further processed using the 
minimum redundancy maximum relevance (mRMR) 
and least absolute shrinkage and selection operator 
(LASSO) methods to obtain a subset of optimal features. 
The radiomics model was validated based on area-
under-the-curve (AUC) values, accuracy, specificity, and 
sensitivity using the R-studio software.

Results: The diagnostic accuracy, specificity, PPV, NPV, 
and AUC values obtained for the training cohort was 
0.91, 0.9, 0.93, 0.9, and 0.96 CT angiography (CTA), 
0.93, 0.93, 0.95, 0.90, and 0.96 computed tomography 
normal (CTN), and 0.92, 0.87, 0.91, 0.96, and 0.96 
CT venogram (CTV). These values were subsequently 
confirmed in the validation cohort.

Conclusion: The radiomics-based prediction model 
proposed in this study successfully differentiated 
between SCH and SCC throat cancers using CT 
imaging, thereby facilitating the development of accurate 
preoperative diagnosis based on specific biomarkers and 
cancer phenotypes.

Keywords: radiomics, tomography x-ray computed, 
nomograms, neck, machine learning
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Head and neck squamous cell carcinomas 
(HNSCC) represent the fifth most common 

cancers in the world as compared to other types of 
cancers.1,2 The HNSCC group of cancers includes oral, 
nasopharyngeal, and throat cancers,3 in which throat 
cancer is the second most common cancer affecting 
the respiratory tract with a survival rate of 64.2%. In 
general, cancer therapy includes surgery, radiotherapy, 
chemotherapy, or biological agents that have been 
selected according to the patient’s case. The risk factors 
for throat cancer infection increases with alcohol 
consumption and cigarette smoking, in addition to other 
factors such as genetics and nutrition.4 For throat cancer 
diagnosis, a CT scan is usually recommended by the 
radiologist as it is the fastest method to obtain a result. 
The use of thin-slice helical CT with 2-dimensional 
(2D) reconstruction is commonly employed for the 
diagnosis. During this scanning process, the appearance 
of soft tissue and bony details such as calcification, 
abnormal changes in the throat, and site of the spinal 
canal can be clearly demonstrated.5 The differentiation 
between cystic or necrotic tissues is supported by CT 
angiography (CTA) and CT venogram (CTV) scans, 
whereby the tumor regions appear brighter due to their 
heterogeneous enhancement pattern as opposed to the 
normal regions.6 Nevertheless, the radiologist faces a 
challenge in the diagnosis of throat cancers especially 
in the early-stages due to non-specific symptoms 
such as hemorrhage, calcification, and presence of 
heterogeneous masses. The tumor histology is usually 
determined using biopsy, although this method may 
produce errors in sampling or region detection and 
subsequently result in complications.7 Therefore, 
using CT imaging, selected features from the clinical 
images of the tumor can be extracted to discriminate 
intra-tumor heterogeneity. The differentiation between 
the intratumor heterogeneity has a significant effect 
on the prediction, diagnosis, prognosis, response, and 
staging of cancer.8 Radiomics is a powerful technique 

employed to analyze image textures. It is a new method 
in translational research that has been applied for the 
discrimination of cancer phenotypes using quantitative 
features derived from the imaging data. For instance, a 
high number of textural features such as measurements 
from the mean and standard deviation can be extracted 
from the imaging data and converted into predictive 
mathematical models9 that may facilitate clinical 
decisions. Radiomics is a useful method to differentiate 
between benign and malignant lesions in head and neck 
cancers, and early metastatic lesions as well as provide 
prognosis and predictive factors for the tumor, thereby 
leading to an effective treatment plan for patients.

Usually, throat cancers are discovered in the later 
stages since it is difficult to diagnose this cancer in 
the early stages, thus decreasing the rate of survival. 
Therefore, radiomics is applied to the medical imaging 
analyses on existing tumors or newly diagnosed tumors 
of patients as it may provide new information to 
physicians. For instance, the expression of genomic 
and proteinuria systems based on the features of the 
radiomics model for these images can be extracted; thus, 
allowing physicians to obtain phenotypic gene-protein 
patterns which may include prognostic information.10,11 
Therefore, this additional information is beneficial 
and provides details that may not be visible to the 
naked eye. This study aims to differentiate squamous 
cell hyperplasia (SCH) (benign) from squamous cell 
carcinoma (SCC) (malignant) using textural features 
extracted from CT images and thereby, facilitate the 
preoperative medical diagnosis and treatment of throat 
cancers without the need for sample biopsies.

Methods. This retrospective throat cancer diagnostic 
study was approved by the Second Hospital Ethical 
Committee of Jilin University, Changchun, China. The 
informed consent was waived off because of the nature 
of the study, which was retrospective, with preserving 
patients’ data and not disclosing and handled with 
strictly confidential. This study has been conducting 
based on the Helsinki Declaration. The medical 
imaging technology used in this study was based on the 
picture archiving and communication system (PACS) 
obtained from the Second Jilin University Hospital, 
Changchun, China. The images were reviewed from 
June 2017 to January 2019 to select patients who were 
pathologically diagnosed with throat cancer. This study 
focused on patients that underwent CT scanning, in 
which the medical history of patients such as gender, 
smoking, alcohol, tumor staging, and histopathology 
of the surgical specimen was available in the database. 
In total, 100 patients with throat cancer were selected 
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for the training and validation groups, in which 60 
patients were diagnosed with SCC and 40 patients were 
diagnosed with SCH. Based on their gender and age 
group classification, 73 males and 27 females, ranging 
from 44 to 85 years, were selected as participants and 
the Kolmogorov-Smirnov test was applied to determine 
the normal distribution of the data. Information 
regarding the lifestyle choices of the patients was also 
recorded and the patient profile consisted of smokers 
(n=74), non-smokers (n=14), and those who quit 
smoking (n=12). In addition, the participants also 
comprised alcoholic-drinkers (n=73), non-drinkers 
(n=20) and those who stopped drinking (n=7). This 
study established exclusion and inclusion criteria and 
followed with high strictness and transparency to know 
these criteria. Figure 1 depicts the classification of the 
study participants and clarifies the mechanism followed 
to exclude and include patients.

Computerized tomography (CT)  scan parameters. 
The CT scans of the throat were performed using a 
256-Slice scanner (Philips iCT, Netherland), with the 
tube voltage and tube current set at 120 kVp and 200 
mAs, respectively. The scan parameters were established 
as follows: scanning layer thickness of 1 mm in 
diameter, scanning layer spacing of 1 mm, pitch ratio 
of 0.342, matrix array dimension of 256 x 256, and 
scan time of 1-3 seconds. A preoperative throat scan was 
first obtained using CTN imaging that was performed 
without contrast media. The second CT scan was 
accomplished for CTA 35s and CTV 65s using contrast 
media as well as a non-ionic iodinated contrast medium 
for intravenous injection (dosage concentration of 
1.5 mL/kg and injection rate of 3.5 mL/s) (Ultravist, 
100 Bayer Blvd, Whippany, NJ, United States). The 
reconstruction was performed for all the throat scans 

Figure 1 - Flowchart representing the patient selection criteria process. SCH: squamous 
cell hyperplasia, SCC: squamous cell carcinoma (SCC) 
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according to the established criteria. The CT images 
were exported to DICOM format for feature extraction.

Setup experiments. The CT images of SCH and 
SCC were segmented manually based on the region 
of interest (ROI) by a radiologist with 3 years of 
experience. Subsequently, the radiomics features were 
extracted from these segmented CT images. The ROI 
was reviewed by an expert radiologist with more than 
20 years of experience. The ROI was drawn around the 
tumor outline walls for all the images. The borders of 
the tumor were excluded from this study as the edges 
of the tumor can sometimes merge with normal tissues 
and subsequently produce weak results. The ROI’s 
artificial outline for the CT images was performed using 
ITK-SNAP 3.8.0 (www.itksnap.org)12,13 (Figure 2).

The radiomics features obtained using the A.K. 
software (GE Healthcare, China) were automatically 
calculated and divided into volumetric, texture, 
histogram, and wavelet features.14 The radiomics data 
provided 396 features, although most of them were 
not useful for clinical applications. For the selection of 

useful features with potential clinical application, least 
absolute shrinkage and selection operator (LASSO) 
and minimum redundancy maximum relevance 
(mRMR)  methods were employed to eliminate 
redundant and irrelevant features before proceeding 
with the construction of the logistic regression model. 
The mRMR method was used first, and followed by 
the LASSO method which was used as a confirmation 
method. These features were associated with one or 
more useful outcomes under the logistic regression 
model. These features were subsequently divided into 
6 groups consisting of a histogram, gray level size zone 
matrix, form factor matrix, gray-level co-occurrence 
matrices, and run-length matrix for data analysis.

For the selection process using the mRMR method, 
30 features were retained in this process and the 
irrelevant features were eliminated. Next, the LASSO 
method was performed to extract the most effective 
subset of features for the construction of the final 
logistic regression model. In the LASSO model, a 
10-fold cross-validation analysis was used to create the 

Figure 2 - The segmentation process by ITK-SNAP software for squamous cell carcinoma showing A-C) malignant and D-G) the squamous cell 
hyperplasia benign. 
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optimal penalization coefficient lambda (λ). The λ value 
that gave the lowest average binomial deviance was used 
in the feature selection. The vertical lines accompanied 
by red points were drawn for the optimal values using 
the lowest criteria. Lastly, a coefficient profile plot was 
produced against the log (λ) sequence based on the 
coefficient LASSO profiles of 1188 features.

Statistical analysis. The statistical analyses for the 
extracted features obtained from the CTA, computed 
tomography normal (CTN), and CTV images were 
performed using the open-source R-Studio Server 
software. The values for the multivariate logistic 
model were considered significant at p<0.05. The 
receiver-operating-characteristic (ROC) and area-
under-the-curve (AUC)  analyses were used to evaluate 
these models. The logistic regression model and ROC 
curve were analyzed using the R software package to 
discriminate SCH from SCC lesions from the training 
cohort and validation cohort.  The optimal threshold 
value calculated for the training cohort was applied to 
the validation cohort to differentiate the SCH lesions 
from SCC lesions. Therefore, the optimal threshold 
was obtained by maximizing the Youden index. All 
the statistical analyses were performed using R-Studio 
Server (Version 1.1.463, GE Healthcare, China).

Results. The data in this study was obtained from 
100 patients who suffered from throat cancer. Based on 
their histology and pathology results, 60 patients suffered 
from SCC and the remaining 40 patients suffered from 
SCH. These patients were divided into the training 
group (70%) and test group (30%). Additionally, no 
statistical differences were observed between the age 
(p=0.12), gender (p=0.50), smoker status (p=0.90), and 
alcohol consumption (p=0.90) for both groups.

Construction of a radiomics model and feature 
extraction from CT images. In total, 1188 features 
were extracted from the CTA, CTN, and CTV 

images, whereby 396 features were extracted from each 
segmented ROI image. Once the number of features 
were stabilized, the most effective subset of the extracted 
features was determined to evaluate the corresponding 
coefficients. A total of 12 features were selected from 
the extracted features for CTA, 11 for CTN, and 12 
for CTV; thereby, indicating the construction of a 
promising radiomics-based prediction model for throat 
cancer.

The diagnostic capability of the CT radiomics model 
for throat cancer. In this study, CTA, CTN, and CTV 
parameters were used for the CT images to measure the 
diagnostic abilities of these parameters based on the 
receiver operating characteristic (ROC) curve values. 
The dataset obtained using these parameters were trained 
separately using the logistic regression model. The 
radiomics model constructed based on the CT images 
resulted in the AUC value of 0.96 (95% CI: 0.92-1) for 
all 3 parameters (CTA, CTN, and CTV) in the training 
cohort.

The logistic regression model was then tested using 
the validation cohort for all 3 parameters. The radiomics 
model based on the CT images resulted in the  AUC 
value of 0.94 (95% CI: 0.82-1) for CTA and CTV, 
while a higher AUC value of 0.96 (95% CI: 0.87-1) 
was obtained for the CTN parameter.

The predictive performance of the different CT 
images and comparison of radiomics features extracted 
from these images such as accuracy, specificity, 
sensitivity, positive predictive value (PPV), and negative 
predictive values (NPV) for the training cohort and 
validation cohort are shown in Table 1.

Based on the results obtained, the CTN radiomics 
model provides a promising diagnostic ability for throat 
cancer as compared to the other parameters of the 
CT images. Specifically, the logistic regression model 
produced significantly higher results for AUC (0.96), 
accuracy (0.93), sensitivity (0.93), and specificity 

Table 1 - The performance of the CT parameters based on the radiomics model.

CT parameters Training data Testing data

Acc. Sen. Spe. PPV. NPV. Acc. Sen. Spe. PPV. NPV.

CTA 0.91 0.92 0.9 0.93 0.9 0.78 0.93 0.0 0.83 0.0

CTN 0.93 0.93 0.933 0.95 0.90 0.84 0.94 0.33 0.88 0.50

CTV 0.92 0.97 0.87 0.91 0.96 0.78 0.75 1 1 0.43

CTA: computed tomography artery, CTV: computed tomography venous, CTN: computed tomography normal, Acc: accuracy, 
Sen: sensitivity, Spe: specificity, PPV: positive predictive value, NPV: negative predictive value
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(0.93) in the training cohort, and these results were 
subsequently confirmed in the validation cohort with 
values of 0.96, 0.84, 0.94, and 0.33, respectively. 
However, the CTN radiomics model yielded better 
results due to the absence of contrast media, while the 
contrast enhancement displayed in CTA and CTV 
introduced heterogeneity in the radiomics features and 
decreased their predictive ability.

The mean AUC values for all 3 parameters used in 
this study are represented in Figure 3. The mean AUC 
value for CTN was higher compared to the values 
obtained for CTA and CTV imaging. A statistically 
significant difference was also observed between the 
values for all 3 parameters (p<0.0001).  

The predictive performance of the radiomics model 
proposed in this study was higher as compared to the 
clinical model. Figure 3 depicts the nomogram for the 
decision curve based on the evaluation of the clinical 
application of the imaging data. The net benefit in the 
y-axis of the nomogram is dependent on the difference 
in the expected benefit and the expected harm for 
different threshold probabilities in the validation cohort 
based on the introduced model [Net benefit = true 
positive rate - (false positive rate × weighting factor), 
weighting factor = threshold probability/(1-threshold 
probability)].

The analysis of extracted features. Based on the 
feature selection by the mRMR and LASSO methods, 
only the most significant features identified in the logistic 
regression model  for each parameter were used in this 
study. In total, 12 features (Inverse Difference Moment, 

Cluster Shade, GLCM Energy, Haralick Correlation, 
Volume, Short Run Emphasis, Long Run High Grey 
Level Emphasis, Correlation, Haralick Correlation) 
were selected for CTA (Figure 4A), while 11 features 
(Cluster Prominence, Cluster Shade, GLCM Energy, 
Haralick Correlatio, Correlation, Short Run Low Grey 
Level Emphasis, Inverse Difference Moment), and 12 
features (Cluster Shade, GLCM Energy, Correlation, 
Inertia, Surface Area, Run Length Nonuniformity, 
GLCM Entropy) were selected for CTN (Figures 4B) 
and CTV (Figure 4C), respectively. The features selected 
using the LASSO model parameters varied significantly 
between SCH lesion and SCC. The statistically 
significant values for the training cohort and validation 
cohort are listed in Table 2.

Discussion. In this study, 3 parameters (CTA, 
CTN, and CTV) were used for the CT images based on 
the logistic regression model as compared to a previous 
study that used only one parameter.15 The results 
obtained in this study yielded statistically significant 
differences between the SCH and SCC lesions based 
on the 3 parameters used as compared to previous 
studies.16,17 In these studies, the authors proposed the use 
of computer-aided diagnosis (CAD) for the prediction 
of patients with throat cancer, thereby increasing the 
diagnostic performance for early-stage cancers18 as 
well as minimizing errors using a classification system. 
In this study, values of 0.78 were obtained for CTA, 
0.84 for CTN, and 0.78 for CTV. Data from the CTN 
imaging resulted in a higher accuracy, specificity, and 
sensitivity in the training cohort, in which the data 
was subsequently confirmed in the validation cohort 
based on the established parameters. Thus, these results 
indicate that the diagnostic evaluation established 
in this study was relatively stable. Additionally, the 
discrimination of SCH lesions from SCC throat cancers 
using CT images was supported by the development 
of a radiomics score. The radiomics score consisted 
of a nomogram that performed well in differentiating 
between benign lesions and malignancy. The prediction 
based on the calibration curve for throat cancer and 
the decision curve analysis (DCA), which included 
a nomogram, were shown to be useful for clinical 
application.19

Despite the importance of CTA and CTV in clinical 
cases, their predictive ability in the radiomics model 
was lower due to the use of contrast enhancement that 
resulted in heterogeneity for the radiomics features. 
No enhancement is required for CTN images, thus 
resulting in its higher predictive ability as compared to 
other parameters when used in the radiomics model.

Figure 3 - Box plot of area-under-the-curve (AUC) values for throat 
cancer illustrating the higher values of computed tomography 
normal (CTN) parameters as compared to computed 
tomography artery (CTA) and computed tomography venous 
(CTV).
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Table 2 - The statistically significant for least absolute shrinkage and 
selection operator (LASSO)  features selected of throat cancer 
for each parameter used in this study.

Model Training cohort 
(p-value)

Validation cohort 
(p-value)

CTA <0.000*    0.014*

CTN <0.000* <0.008*

CTV <0.000* <0.002*

*p-value is determined by the Spearman’s rank correlation test and p<0.05 
is statistically significant. CTA: computed tomography artery, CTV: 

computed tomography venous, CTN: computed tomography normal

Figure 4 - The least absolute shrinkage and selection operator (LASSO)  
features after univariate logistic regression and removing 
redundancies, for each parameter was used in our study. 
A) The right and left image of compared to computed 
tomography artery (CTA), B) the right and left image of 
computed tomography normal (CTN), C) the right and left 
image of computed tomography venous (CTV).

Radiomics is an emerging field of research based on 
computer-aided technology, in which medical images 
are converted into a sequence of data using computer 
algorithms.20,21 The microscopic properties of the tumor 
biomarkers and biological phenotypes are captured by 
the image and the features of the tumor are extracted 
using radiomics software to identify the heterogeneity 
of the tumor biomarkers.22,23 The relationship between 
the extracted features and biological phenotype is quite 
complex,24 mainly due to the extraction of hundreds 
of radiomics features for these tumor biomarkers. 
Therefore, the utility of these features is evaluated 
based on the parameters established for the data.25 

The radiomics score was developed in this study to 
determine the prognosis of SCH lesions from SCC 
lesions. The differentiation, calibration, and clinical 
utility of this score was applied using a training cohort 
and subsequently, a validation cohort to evaluate 
the performance of this model. The radiomics model 
achieved a good result as compared to the conventional 
model. 

The radiomics features derived from the CT 
images were quantitatively evaluated in this study to 
discriminate SCH lesions from SCC throat cancer 
lesions. Additionally, a radiomics-based prediction 
model was developed using the logistic regression model. 
The CTN scan significantly discriminated SCH lesions 
from SCC throat cancers, as indicated by the AUC 
values of 0.96 obtained in the training cohort and  0.96 
in the validation cohort. The results observed in this 
study were consistent with previous studies indicating 
that normal CT images exhibited a higher prediction 
performance as compared to enhanced CT images.26-28 
The main reason for this observation is attributed to the 
clearer identification of the phenotypic heterogeneity of 
tumors using the normal CT scan as opposed to the 
reduced visibility of enhanced CT images due to the 
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existing intra-tumoral contrast material. Specifically, 
the ROI contains the entire lesion, as opposed to 
previous studies that have only >1 cm.29 The patterns 
and distributions such as cystic and calcification 30 
are crucial for the differentiation between benign and 
malignant tumors.31

This study also offers an advantage that has not 
been previously described in any study. Two methods 
were used to select the features required for the 3 CT 
images, as opposed to the use of only a single method 
LASSO.18,29 For instance, the mRMR method was 
performed to eliminate redundant and irrelevant 
features. Subsequently, the LASSO method was used to 
select the optimized subset.32 The features were selected 
with high accuracy and were able to significantly 
discriminate SCH from SCC lesions, as evidenced by 
the results in this study.

Study limitations. The number of sample cases 
included in this retrospective study was insufficient 
as only 100 cases of SCC and SCH were analyzed. 
Although the Digital Imaging and Communications in 
Medicine (DICOM) data obtained by the single-center, 
single CT can ensure data consistency, the ability to 
performing a comprehensive evaluation of the model 
is lacking. Finally, the manual sketching of ROI by 
radiologists can lead to discrepancies. Therefore, it is 
envisaged that future studies should incorporate a larger 
sample size using multi-center radiomics data.

In conclusion, the radiomics features offer a rapid 
topography and biomarker assessment of cancer. Using 
this approach, the use of medical imaging, computer 
software, and machine learning are combined to obtain 
a clearer vision of cancer. The improvement of medical 
imaging data, together with the development of a 
new computational model, support the diagnosis and 
treatment of cancers with high accuracy. Cancer research 
is essential for the discovery of tumor heterogeneity. 
Hence, it is necessary to develop a computational model 
that optimizes the significant radiomics features for its 
application in clinical cases.

This study has yielded promising results for the 
differentiation of SCH lesions from SCC throat cancers 
based on the 3 parameters established for CT imaging. 
Moreover, the CTN data imaging was shown to have 
more efficiency as compared to the other parameters 
identified for CTA and CTV. It is envisaged that the 
findings of this study can facilitate the early diagnosis 
of throat cancer without the need for biopsies, thereby 
leading to higher survival rates and faster administration 
of medical treatments.
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