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ABSTRACT

النوى،  والعتائق، وحقيقيات  البكتيريا،  الميكروبيوتا عبارة عن مجموعة من 
جسم  وتجاويف  أسطح  تغطي  التي  والفطريات  والفيروسات،  والعاثيات، 
والتغذية،  الغذائي،  النظام  مثل  عوامل  بعدة  الجسم  داخل  تتميز  الإنسان. 
والمواد الغريبة الحيوية، والالتهابات الميكروبية. أظهرت العديد من الدراسات 
وتنظم  الأمراض  مسببات  المقاومة ضد  تحفز  أن  يمكن  الأمعاء  ميكروبيوتا  أن 
الاضطرابات  من  بالعديد  اضطرابها  يرتبط  ذلك،  إلى  بالإضافة  المناعة.  جهاز 
 )IBD( الفسيولوجية والكيميائية الحيوية، بما في ذلك مرض التهاب الأمعاء
والسمنة، وأمراض المناعة الذاتية مثل السكري، وارتفاع ضغط الدم، وسرطان 
القولون والمستقيم  الدموية. يعد سرطان  القلب، والأوعية  القولون، وأمراض 
حيث  العالم،  أنحاء  جميع  في  فتكًا  السرطان  أنواع  أكثر  ثالث   )CRC(
وقت  هذا  العالم.  مستوى  على  سنويًا  وفاة  حالة   900،000 في  يتسبب 
عن  منه  والوقاية   CRC بحدوث  وثيقًا  ارتباطًا  الأمعاء  ميكروبيوتا  ارتبطت 
المضيف،  دفاع  وتعديلات  والانتقال،  والغزو،  البكتيرية،  المستقلبات  طريق 
إلى ذلك، يمكن أن يؤثر على  بالإضافة  البكتيري.  المناعي  وتفاعلات الجهاز 
في  للتلاعب  الحيوي  والدخيل  الأدوية  مثل  الكيميائية  المركبات  استقلاب 

.CRC استجابة العلاج في مرضى

Microbiota is a collection of bacteria, archaea, 
eukaryotes, bacteriophages, viruses, and fungi 
that cover human body surfaces and cavities. They 
characterize inside the body due to several factors 
such as diet, nutrition, xenobiotic substances, and 
microbial infections. Several studies have shown that 
gut microbiota can induce resistance against pathogens 
and regulate the immune system. In addition, their 
disruption is associated with several physiological 
and biochemical disorders, including inflammatory 
bowel disease (IBD), obesity, autoimmune diseases 
such as diabetes, hypertension, colon cancer, and 
cardiovascular disease. Colorectal cancer (CRC) is 
the third-deadliest cancer worldwide, accounting for 
approximately 900,000 deaths per year globally. Gut 
microbiota has been heavily linked to CRC incidence 
and prevention via bacterial metabolites, invasion, 
translocation, host’s defense modulations, and 
bacterial-immune system interactions. In addition, it 
can influence the metabolism of chemical compounds 
such as drugs and xenobiotics to manipulate the 
treatment response in CRC patients.
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Review Article

Microbiota is a collection of bacteria, archaea, 
bacteriophages, eukaryotes, viruses, and fungi 

that cover human body surfaces and cavities.1 The 
gut microbiome is considered a health indicator 
that is sensitive to environmental, dietary, and host’s 
genetic factors.2 Gut microbiota can induce resistance 
to pathogens and regulate the immune system.3 As 
a result, disruption of gut microbiota is associated 
with several physiological and biochemical disorders, 
including inflammatory bowel disease (IBD), obesity, 
autoimmune diseases such as diabetes, hypertension, 
colorectal cancer (CRC), and cardiovascular disease.4 In 
a person’s early life, gut microbiota develops through 
breastfeeding during their infancy, and it matures with 
age and exposure to environmental factors.5 However, in 
late childhood, microbiota composition and maturation 
stabilize and the composition begins to experience 
imbalances in late adulthood.5 The formation, diversity, 
and function of gut microbiota differ based on gender, 
ethnicity, nutrition, age, and health conditions of the 
host.6 This review article discusses in depth the role of 
gut microbiota and its functions to explore the link 
between development of CRC in patients and their 
responses to treatment.

Mechanisms that lead to imbalance of gut microbiota. 
Gut microbiota composition is characterized by several 
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factors such as diet, nutrition, xenobiotic substances, 
and microbial infections.7 Perturbations of these factors 
might decrease the diversity of gut microbiota, leading 
to depletion of health-related microbiome and an 
increase in microbial pathogens.7 These perturbations 
could last for short durations in an acute state, affecting 
the gut microbiota compositions.8 However, a chronic 
state of such perturbations will induce alterations in the 
function and composition of gut microbiota that may 
result in persistence of such perturbations (Figure 1).8

Nutrients/diet. Gut microbiota mainly derives its 
nutrition from the fermentation of carbohydrates, 
lipids, and amino acids.9 For carbohydrates, 
microbiota colonies including Bacteroides, 
Roseburia, Bifidobacterium, Faecalibacterium, and 
Enterobacteriaceae, target indigestible oligosaccharides 
and carbohydrates, resulting in the synthesis of 
short-chain fatty acids (SCFAs).10 These SCFAs regulate 
hosts’ energy generation and remove toxins through 
carbohydrate metabolism. For instance, tyrosine/
pancreatic peptide YY3-36, which regulates the hosts’ 
energy balance, interacts with SCFAs.11 Additionally, 
the SCFA component butyrate reduces the buildup 
of harmful byproducts such D-lactate.12 This process 
is carried out by Bacteroides such as Bacteroides 
thetaiotaomicron (B. thetaiotaomicron), which produce 
enzymes including glycosyltransferases, glycoside 
hydrolases, and polysaccharide lyases.12 Furthermore, 
carbohydrate fermentation and bacterial metabolism 
lead to the production of harmful elements such as 
oxalates. As a result, other microbiota species including 
Oxalobacter formigenes, Lactobacillus species, and 
Bifidobacterium, eliminate this product, preventing 
kidney stones.13

In lipid metabolism, gut microbiota can regulate 
triglyceride breakdown by preventing inhibition 
of lipoprotein lipase activity in the adipocyte.14 In 
addition, B. thetaiotaomicron has been shown to induce 
the colipase activity required for lipid digestion.15 
Additionally, human proteinases found in microbial 
proteinases and peptidases enable gut microbiota to 
digest proteins. Amino acid transporters are part of the 
bacterial cell wall and aid in the absorption of amino 
acids, which are then converted into small signaling 
molecules and antimicrobial peptides (bacteriocins).16 

For example, L-histidine and glutamate are converted to 
histamine and γ-aminobutyric acid (GABA) through the 
regulation of histamine and glutamate decarboxylases.17 
However, protein metabolism can be harmful to human 
due to the production of branched-chain amino acids, 
various phenolics, and other metabolites that are toxic 
to the host.18 In addition, the fermentation of amino 
acids produces compounds that are associated with gut 
diseases such as IBD and CRC.18

Previous studies on gut microbiota have 
demonstrated that it can help in the production of 
vitamins like vitamin K and a number of vitamin-B 
components such as biotin, cobalamin, folic acid, 
nicotinic acid, pantothenic acid, pyridoxine, riboflavin, 
and thiamine.19 For instance, thrombin levels associated 
with hemorrhage formation were lower in germ- and 
vitamin K-free animals than in conventional mice with 
average prothrombin levels and clotting activity.20 An 
overview of the impact of gut microbiota on nutrition 
is shown in Figure 2.

Fruits and vegetables are sources of polyphenols 
such as phenolic acids, flavonoids, stilbenes, lignans, 
and secoiridoids, which are needed by the body for 
their bioactivity roles.21 In general, polyphenols are 
mainly absorbed by colonic microbiota due to their 
poor absorption in the small intestine.22 Polyphenols 
emerge as glycosidase conjugated to monosaccharides 
such as glucose, galactose, rhamnose, and rutinose.9 
These glycosidases are hydrolyzed by microbiota species 
such as Bacteroides distasonis (B. distasonis), Bacteroides 
uniformis (B. uniformis), Bacteroides ovatus (B. ovatus), 
Enterococcus casseliflavus (E. casseliflavus), Eubacterium 
cellulosolvens (E. cellulosolvens), Lachnospiraceae CG19-1, 
and Eubacterium ramulus (E. ramulus).9 Polyphenols 
are inactive until the removal of sugar by microbiota, 
which induces their activity concerning the structure of 
polyphenols and richness of microbiota in the colon.22 
An example of the biotransformation of polyphenols 
is the derivation of aglycone and equol from inactive 
isoflavones as antiandrogenic and hypolipidemic 
effects.23

Inflammation due to specific nutrients/diet. The 
development of gut microbiota in the human body 
starts in early infancy through breastfeeding and is 
related a mother’s diet during her pregnancy.24 Previous 
studies have shown that gut microbiota differs between 
breastfed and formula-fed infants.25 Studies showed 
that breast milk was composed of bioactive compounds 
that supported nutrient digestion and absorption, 
immune protection, and antimicrobial defenses.26 Also, 
gut microbiota such as Bifidobacterium species cause 
carbohydrate fermentation of SCFAs and butyrate, and 
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regulate the immune system.27 In addition, different 
groups of bacterial colonies such as the Bacteroides and 
Clostridium species, dominantly found in formula-fed 
infants compared to breastfed infants, suggests the 
nutrition selectivity of gut microbiota colonization.28 
Furthermore, a recent study showed that breastfed 
infants have less microbiota diversity than formula-fed 
infants, which further supports the notion that diet 
shapes the development of gut microbiota from an early 
age.25

Another diet-related perturbation of gut microbiota 
is the type of nutrients consumed. Gut microbiota in 
a healthy state requires a diet rich in fruits, vegetables, 

and fiber that produce indigestible molecules required 
by metabolizing organisms such as the Firmicutes strain, 
Ruminococcus bromii, Roseburia, and Eubacterium 
rectale.29 The colonization of bile-tolerant bacteria in 
meat-based diets and Firmicutes phylum in plant-based 
diets has also been shown in studies to be more 
pronounced in those consuming meat-based diets than 
plant-based diets.30

Seasonal and geographic variables can also affect the 
makeup of the gut microbiota. Children in Europe have 
a diet rich in protein, sugar, and carbohydrate and poor 
in fiber, which is related to dominance of Bacteroides 
in their diets. On the contrary, children in Africa 

Figure 1 - Imbalance of gut microbiota via diet, infections, nutrition, and xenobiotic.

Figure 2 - Effects of gut microbiota on nutrition.
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have an agricultural diet linked to the dominance of 
Prevotella.31 Additionally, environment can impact the 
makeup and diversity of gut microbiota. For instance, 
an investigation on the impact of seasons on gut 
microbiota in the Ukrainian population revealed that 
Actinobacteria were dominant and Bacteroidetes were 
reduced during the summer whereas Firmicutes were 
more stable and unaffected by seasonal changes.32

Polyphenols are present in a broad range of plant 
foods and interact with epithelium cells to modulate the 
composition of gut microbiota.33 Metabolites produced 
from polyphenols mainly induce Lactobacillus strains 
that inhibit the pathogenic action of some bacteria such 
as Salmonella and Helicobacter pylori (H. pylori) species.33 
Gut microbiota such as B. distasonis, B. uniformis, 
B. ovatus, E. casseliflavus, and E. ramulus can degrade 
quercetin and polyphenol metabolites with flavanol.9 
However, flavanol is an aglycone that has been shown 
to have an inhibitory effect on Staphylococcus aureus and 
H. pylori, which are vancomycin intermediates.34

Vitamins and minerals play an essential role in 
regulating the symbiotic relationship between hosts and 
gut microbiota.35 For example, vitamins K and B are 
produced by gut microbiota and shared among species 
through cross-feeding interactions.36 Additionally, 
minerals act as cofactors required by hosts and bacteria, 
and play an essential role in the growth selectivity of gut 
microbiota.35 For instance, an elevated level of iron is 
related to the growth of pathogenic bacteria.37

To this end, a diet that provides balanced nutrition 
maintains diversity and composition of gut microbiota, 
while a diet high in fat or protein leads to a decrease 
in bacterial composition and an increase in the host’s 
susceptibility to pathogenic infection. Therefore, the 
composition of a host’s gut microbiota is essential for 
recommending them with appropriate nutrition and 
diet.

Gut microbiota species and metabolites associated 
with CRC or chronic inflammation. Gut microbiota 
imbalance or dysbiosis is associated with several 
diseases, including IBD, CRC, obesity, diabetes 
mellitus, and autism spectrum disorders. The main 
gut microbiota species in the human intestine 
are Firmicutes, Bacteroidetes, Actinobacteri, and 
Proteobacteria.38 Perturbation of gut microbiota induces 
metabolites that create chronic inflammation, leading 
to the production of carcinogenic agents. Factors such 
as nutrition, antibiotics, and environment, affect gut 
microbiota composition and decrease their diversity; 
this is associated with the occurrence of several diseases. 

Colorectal cancer is the third-deadliest cancer in the 
world, accounting for approximately 900,000 deaths 

each year globally.39 Several studies have connected 
CRC to factors such as nutrition and physical activity, 
which also effect modulation of gut microbiota. Indeed, 
the gut microbiome manipulates CRC development 
directly and indirectly through bacterial metabolites, 
invasion, translocation, host’s defense modulations, and 
bacterial-immune system interactions.40 Therefore, in 
this section, the relation of gut microbiota species and 
their metabolites to CRC will be discussed (Tables 1 & 2).

Bacteria associated with CRC. Several studies have 
found elevated F. nucleatum DNA and RNA sequences 
in tumor patients compared to non-tumor patients, 
including in CRC patients.41 In addition, F. nucleatum 
was further linked to the stages of CRC, recurrence, 
and patients’ low survival rates.42 Moreover, studies 
have shown an elevation of F. nucleatum prevalence 
with a molecular feature of CRC, such as the mutation 
of B-Raf Proto-Oncogene, Serine/Threonine Kinase, 
hypermutation with microsatellite instability, and 
metastases.43 In addition, the serrated pathway was 
discovered to be manipulated by F. nucleatum in CRC.41 
Furthermore, FadA (a virulence factor of F. nucleatum) 
can bind to the extracellular domain of E-cadherins and 
induce cancer cell proliferation.41 In addition, CRC 
patients with metastasis have an abundant level of F. 
nucleatum, which has been demonstrated to promote 
autophagy through the upregulation of caspase 
activation and recruitment domain 3 expression.44 Using 
metformin to treat Adenomatous polyposis coli (APC) 
mice showed that F. nucleatum-induced tumorigenicity 
in APCMin/+ mice diminished, suggesting that 
F. nucleatum is the driving factor of CRC.45

Consistent with its role in CRC, F. nucleatum has 
been linked to the inhibition of T-cell infiltration 
and stimulation of myeloid-derived immunity, which 
reflects F. nucleatum in the regulation of immune 
responses in CRC patients.46 Furthermore, F. nucleatum 
modulates CRC by suppressing antitumor responses as 
it enables the expansion of scurfin (FOXP3) non-Treg 
cells.47 Macrophage activation in CRC patients 
results from the elevation of miRNA-21, which 
induces pro-inflammatory interleukin-10 (IL-10) and 
prostaglandin E2, leading to T-cell suppression of 
cell antitumor functions.48 Additionally, fusobacterial 
protein (Fap2) binds to the T cell immunoreceptor 
with immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif domains  inhibitory receptors 
at natural killer cells, leading to immunosuppression in 
CRC patients.49 In addition, Fap2 is also involved in 
inducing cytokines IL-8 and The chemokine (C-X-C 
motif ) ligand one that promote CRC migration and 
progression.50
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Fusobacterium nucleatum (F. nucleatum) induces 
chemotherapeutic resistance in CRC patients through 
the regulation of innate immune responses. Innate 
immune receptors such as toll-like receptor 4 (TLR4), 
myeloid differentiation primary response 88, and 
specific miRNA such as miR18a and miR4082, 
are activated by F. nucleatum to trigger autophagy 
and induce chemotherapy-resistance.51 In addition, 
F. nucleatum associates with TLR4/nuclear factor 
kappa B (NF-kB) to promote Baculoviral IAP Repeat 
Containing 3  expression and obstruct apoptosis.52

Peptostreptococcus species is one of the gut microbiota 
that is enriched in CRC patients.53 Two types of 
Peptostreptococcus species are connected to CRC; 
P. stomatis and P. anaerobius.54

High amounts of P. anaerobius are present in 
CRC patients, indicating a connection between 
them.55 Further investigation has demonstrated that 
P. anaerobius induces TLR2/4, which causes the 
accumulation of reactive oxygen species (ROS) and 
promotes tumorigenic conditions such as cholesterol 
synthesis and cell proliferation.55

Even though P. stomatis does not promote CRC, 
it might induce tumor microenvironment (TME) 
conditions such as hypoxia. P. stomatis ferments 
carbohydrates to produce saccharides including acetic, 
isobutyric, isovaleric, and isocaproic acids. In CRC fecal 
samples, RT-qPCR data showed that P. stomatis was 
abundantly present in consensus molecular subtype-1 
of CRC.54

Prevotella intermedia (P. intermedia) is a gram-
negative bacterium mainly involved in periodontitis 
and several inflammatory diseases, as well as in some 
types of cancers. Studies have shown the association 
of P. intermedia with CRC development in African-
American cohorts. Further, P. intermedia was present 
in the multicohort study of 526 metagenomic CRC 
patents’ fecal samples.56,57

As with P. intermedia, Parvimonas micra (P. micra) 
was abundantly found in CRC patients’ fecal samples, 
suggesting its role in CRC.58 Parvimonas micra has been 
shown to interrupt nucleotide-binding oligomerization 
domain 2 (NOD2) - an innate immune sensor - leading 
to the development of periodontitis. Nucleotide-
binding oligomerization domain 2 is also involved in 
cancer progression and chemotherapy resistance, which 
further suggests that P. micra regulation of NOD2 
might induce CRC.59

Enterotoxigenic Bacteroides fragilis (ETBF) is a toxic 
substance produced by Bacteroides fragilis (B. fragilis) 
and is associated with the occurrence of CRC.60 In 
addition, studies have shown that B. fragilis is abundant 
in sporadic and familial adenomatous polyposis CRC. 
An individual having a high quantity of B. fragilis is 
at risk of developing CRC.61 Additionally, tumor-prone 
animals infected with enterotoxigenic B. fragilis and 
Escherichia coli (E. coli; producing colibactin) exhibited 
modification of the pro-inflammatory cytokines 
IL-17 through activation of (Signal Transducer And 
Activator Of Transcription 3 [STAT3])  and NF-kB.62 

Table 1 - Bacteria associated with colorectal cancer.

Bacteria Association with colorectal cancer

Fusobacterium nucleatum

- Stages, recurrence, and patients’ low survival rates
- Prevalence of a molecular feature such as mutation of BRAF, hypermutation with microsatellite instability and metastases

- Serrated pathway manipulation
- Binds to the E-cadherins’s extracellular domain and induces cancer cell proliferation

- Promotes autophagy by upregulating CARD3
- Regulates microRNA to induce chemotherapy resistance

- Inhibits T-cell infiltration and stimulates myeloid-derived immunity

Peptostreptococcus anaerobius
- Induces TLR2/4 that causes ROS activation

- Promotes cholesterol synthesis
- Induces cell proliferation

Peptostreptococcus stomatis - Induces hypoxia
- Produces CMS-1

Prevotella intermedia Mutates P53 in pancreatic cancer
Parvimonas micra Interrupts NOD2 that is involved in chemotherapy resistance and cancer progression

Bacteroides fragilis
- Regulates STAT3 and NF-kB that modulate pro-inflammatory molecules such as cytokine IL-17

- Interrupts E-cadherin and DNA damage
- Induces COX-2, causing upregulation of PGE2 and promotion of inflammation and cell proliferation

Streptococcus gallolyticus Induces pro-inflammatory markers such as NF-κB and IL-8
Escherichia coli Induces chromosomal appearance

BRAF: B-Raf Proto-Oncogene, Serine/Threonine Kinase, CARD3: caspase activation and recruitment domain 3, TLR: toll-like receptor, ROS: reactive 
oxygen species, CMS-1: consensus molecular subtype-1, P53: tumor protein p53, NOD2: nucleotide-binding oligomerization domain 2, STAT3: Signal 

Transducer And Activator Of Transcription 3, NF-kB: nuclear factor kappa B, IL: interleukin, COX-2: cyclooxygenase-2, PGE2: prostaglandin E2
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Furthermore, the B. fragilis toxin (BFT) can damage 
E-cadherin that causes alterations in cell morphology, 
and promotes carcinogenesis and irreversible DNA 
damage.63 Furthermore, studies have shown that ETBF 
regulates cyclooxygenase-2, which leads to upregulation 
of PGE2 and promotion of inflammation and cell 
proliferation.63 However, nontoxigenic B. fragilis induces 
protective effect and suppresses pro-inflammatory 
elements to protect from carcinogenic proliferation.63

Streptococcus gallolyticus (S. gallolyticus) plays a role in 
promoting TMEs as it generates an immunosuppressive 
microenvironment.64 Besides, S. gallolyticus-infected 
patients have elevated mRNA expression of pro-
inflammatory markers such as NF-κB and IL-8.59 
Therefore, further investigation is needed of the 
S. gallolyticus subspecies involved in CRC.

Escherichia coli is active in multiple gastrointestinal 
(GIT) diseases, including IBD and CRC, as it invades 
the colonic mucosa and becomes intracellular.65 In 
CRC patients, E. Coli, which produces a genotoxin 
colibactin called pks+, is dominant and is involved 
in DNA double-strand breaks in vivo and in vitro.66 
Escherichia coli pks+ levels are higher in late stages of 
CRC and tumor tissues than in early stages and adjacent 
non-tumor tissues.67 Other genotoxins produced by 
E. coli are the cyclomodulins cycle inhibiting factor, 
which is responsible for independently interrupting 
mitosis than the DNA damage effect.68 Moreover, 
cytotoxic necrotizing factor-1 has been shown to 

induce chromosomal appearance and genomic 
instability by imitating the actin cytoskeleton, which 
leads to senescence.69 Computational proteome-wide 
study predictions of E. coli involvement in CRC 
have shown that E. Coli induces CRC by targeting 
proteins in endoplasmic reticulums, Golgi apparatuses, 
peroxisomes, nuclei, and mitochondria.70

Bacterial metabolites and CRC. Short-chain fatty 
acids are one of the gut microbiota products that function 
to ferment carbohydrates. They regulate the host’s gut 
microbiota intestinal homeostasis by interacting with 
G protein coupled receptors (GPCRs).71 For example, 
SCFAs cooperate with GPR43 to modulate T-cells and 
inhibit histone deacetylation.72 In CRC, SCFAs such 
as butyrate and acetate have been shown to regulate 
downstream targets of the aryl hydrocarbon receptor, 
which involves modulating inflammation in the GIT, 
thereby suggesting a protective synergistic effect against 
CRC in human cell lines and mouse models.73 In 
addition, treating CRC with butyrate results in rebalance 
of composition and diversity of gut microbiota.74 
Therefore, probiotic treatment with Butyricicoccus 
pullicaecorum and Faecalibacterium prausnitzii might be 
used to treat CRC.75,76 In addition, acetate - a SCFA 
product - has been shown to inhibit inflammation and 
induce apoptosis in CRC cells by activating caspase-3.77

Another SCFA product with antitumor activity 
achieved through modulation of Tc17 cells and 
CD8+ T cells (or CTLs) is propionate.78 Butyrate has 

Table 2 - Bacterial metabolites and colorectal cancer.

Bacterial metabolites Examples Effect on CRC

SCFAs Butyrate, propionate, and acetate

- Immunomodulation via regulation of AhR
- Rebalance gut microbiota diversity and composition
- Inhibit NF-kB and activate apoptosis 
- Antitumor effect via modulation of Tc17 cells and CTLs
- Inhibit ERK1/2, causing tumor growth disruption
- Induce ROS activity and decrease glucose oxidation
- Induce HDAC

Bile acid Primary and secondary bile acids

- Bind to FXR as CRC inhibitor
- Promote cancer initiation by upregulating IL-8, ERK1/2, and inhibiting 
STAT3 phosphorylation
- Activate MAPK pathway via upregulation of uPAR and calcium signaling

Lactate
- Creates an acidification environment
- Stimulates angiogenic response to oxygen transfer, glucose delivery and 
nutrition delivery that promote CRC invasion, proliferation, and migration

Succinate - Inhibits CRC proliferation and induces CRC metastasis via SUCNR1 signaling

Protein-derived metabolites HO-PAA, PAA, phenol (produced from 
tyrosine), acetaldehyde, H2S, and NOCs

- Hydrogen sulfide inhibits the anti-inflammatory outcome in CRC cell lines by 
activating NF-kB pathway signaling
- NOCs contribute to K-ras mutation, which drives CRC proliferation

SCFAs: short-chain fatty acids, HO-PAA: 4-hydroxyphenylacetic acid, PAA: phenylacetic acid, H2S: hydrogen sulfide, NOCs: N-nitroso compounds, 
AhR: aryl hydrocarbon receptor, NF-kB: nuclear factor kappa B, Tc17: IL-17-secreting CD8 T cells), CTLs: cytotoxic T lymphocytes, ERK1/2: protein 

kinases 1 and 2, ROS: reactive oxygen species, HDAC: histone deacetylases, FXR: farnesoid X receptor,  CRC: colorectal cancer, IL: interleukin, 
STAT3: Signal Transducer and Activator of Transcription 3, MAPK: mitogen-activated protein kinase, uPAR: urokinase plasminogen activator, 

SUCNR1: succinate receptor 1, K-ras: Kirsten rat sarcoma viral oncogene homolog



1295https://smj.org.sa     Saudi Med J 2022; Vol. 43 (12)

Microbiota and CRC ... Alasiri

been shown to produce anti-inflammatory effects by 
stimulating T cells and increasing production of the 
FOXP3 transcription factor.79 In addition, in Caco-2, 
propionate has been found to induce apoptosis 
by inducing ROS activity and decreasing glucose 
oxidation.80 Furthermore, propionate can inhibit 
the NF-kB pathway, resulting in suppression of IL-6 
production in colon cells.79

Bile acid is a metabolite of the gut microbiota that is 
divided into primary and secondary bile acids. Secondary 
bile acid increases in response to a high-fat diet, which 
has been shown to be involved in the development of 
CRC. Bile acid can interact with a receptor such as 
the farnesoid X receptor (FXR), which is known for 
its inhibitory role in cancer development. farnesoid 
X receptor has been shown to be able to inhibit CRC 
development by maintaining bile acid homeostasis.81 In 
contrast, high bile acid concentration is associated with 
downregulation of FXR, resulting in a pro-tumorigenic 
phenotype.82

Several studies have shown that secondary bile 
acid is a regulator of pro-inflammatory interleukins 
involved in tumor metastasis and progression. For 
example, (lithocholic acid)  has been shown to promote 
cancer development by upregulating IL-8, ERK1/2, 
and inhibiting STAT3 phosphorylation.83 The role 
of secondary bile acid in activating the proliferative 
pathway has been further demonstrated by examining 
the mitogen-activated protein kinases (MAPK) 
pathway. Both the secondary bile acid products LCA 
and (deoxycholic acid)  have been shown to promote 
CRC progression by activating the MAPK pathway 
through upregulation of urokinase-type plasminogen 
activator receptors and calcium signaling.84 In addition, 
DCA has been shown to induce cancer via multiple 
processes, such as through the stimulation of ERK1/2, 
poly-ADP-ribose polymerase, and caspase-3 signaling. 
As a result, mechanisms such as DNA damage, ROS 
generation, and disruption of retinoblastoma protein 
levels cause cancer progression.84

Lactate is a metabolite produced by gut microbiota 
and has an essential role in controlling angiogenic effect 
and TME.85 Lactate has been shown to stimulate TME 
by creating an acidification environment, stimulating 
angiogenic responses to oxygen transfer, glucose 
delivery, and nutrition delivery, thereby promoting 
CRC invasion, proliferation, and migration.86

Succinate is another metabolite produced by gut 
microbiota’s fermentation of fiber. It has a role in 
both cancer progression and prevention. It has been 
shown to not only inhibit CRC proliferation but also 
induce CRC metastasis via succinate receptor signaling. 

Therefore, investigation of the role of succinate in CRC 
requires further examination.87

Gut microbiota produces several metabolites from 
the fermentation of protein to amino acids. Among 
them, hydrogen sulfide has been demonstrated to 
inhibit colon cancer growth and metatstases through 
CD44.88 Other metabolites produced from a meat-based 
protein diet are N-nitroso compounds (NOCs). In 
CRC, NOCs have been shown to contribute to K-ras 
mutation, which drives CRC proliferation.89

Drug metabolism and absorption. Gut microbiota 
can influence the metabolism of chemical compounds 
such as drugs and xenobiotics. Microbiomes can reduce 
hydrolyzation, decarboxylation, dehydroxylation, 
dealkylation, dehalogenation, and deamination of 
endogenous diet compounds and chemical compounds.90 
For example, gut microbiota mediates a range of IBD 
treatments such as 5-aminosalicylic acid prodrugs.91 
Furthermore, gut microbiota manipulates xenobiotic 
metabolism, which leads to chemicals changing to either 
inactive or bioactive substances in the small intestine.92 
For example, in Parkinson’s treatment, Levodopa, is 
interrupted by Enterococcus faecalis and Eggerthella 
lenta.92 It is initially decarboxylated by a tyrosine 
decarboxylase into dopamine and then dehydroxylated 
into m-tyramine by a dopamine dehydroxylase.92 In 
addition, the efficiency of xenobiotic absorption is 
related to the composition of gut microbiota that can 
compete with host metabolites.93 For instance, p-cresol 
(a bacterial metabolite) can compete with the host to 
conjugate sulfate, which might disturb the absorption 
of drugs that need to conjugate with the sulfate to 
function.90 In addition, the gut microbiota can affect 
the production of several enzymes in the host’s small 
intestine and liver. For example, in germ-free and 
conventional (CV) mice, the expression of CYP450 
(an oxidation regulator gene) is elevated in CV mice, 
suggesting that microbiota engages in such regulation.94

Gut microbiota and CRC treatment. Metabolites from 
the gut microbiota have a variety of roles in governing 
CRC therapy. Propionate is one SCFA metabolite that 
has been demonstrated to increase HECT domain 
E3 ubiquitin protein ligase 2, which in turn degrades 
euchromatic histone lysine N-methyltransferase 2 and 
inhibits the growth of CRCs.95 This promotes tumor 
necrosis factor-induced protein 1 and results in the 
downregulation of H3K9me2 metylation, which 
leads to CRC cell death.95 In addition, gut microbiota 
such as F. nucleatum, can be targeted with antibiotics 
to induce a better response to fluorouraci (5FU) in 
CRC patients. A study in orthotopic mice showed 
that the combination of metronidazole and 5FU in 
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nanoparticles to form anti-CRC gel increased treatment 
efficiency.96 Furthermore, targeting F. nucleatum was 
found to be beneficial for restoring tumor-immune 
microenvironments through a phage-based bioinorganic 
hybridization system. The M13 filamentous phages 
were screened to identify an F. nucleatum-specific 
binding phage. Thereafter, silver nanoparticlewere 
electrostatically bound to the F. nucleatum-specific 
phage, resulting in the destruction of F. nucleatum and 
blocking of the recruitment of immunosuppressive 
cells.97

In conclusion, the role of the gut microbiota in 
health and disease has been the subject of scientific 
study for over a decade. Gut microbiota metabolite 
treatment has also been found to be helpful in reforming 
gut microbiota composition and preventing cancer. In 
addition, gut microbiota plays a significant role in the 
absorption of drugs provided in CRC treatment, which 
increases treatment efficiency. However, no significant 
conclusion has been drawn regarding the role of gut 
microbiota in CRC treatment. Therefore, additional 
research is needed in this area.
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