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ABSTRACT

التصوير  طلبات  في  الحالية  الزيادة  مع  التحديات  بعض  الثدي  تصوير  يواجه 
الثدي. يجري البحث عن  التي يمكن أن تفوت خلال برامج فحص  والاورام 
في  الحديث  التقدم  خلال  من  التحديات  هذه  من  للتخفيف  حلول  إيجاد 
الرعاية  ونتائج  العمل  سير  كفاءة  لتعزيز  الاصطناعي  الذكاء  تطبيقات  مجال 
الذكاء  تطبيقات  لبعض  الدراسات طرحت تصاميم  للمرضى.بعض  الصحية 
اشعة  صور  تحليل  في  لاستخدامها  الطبي  التصوير  مجال  في  الاصطناعي 
للثدي،  الاشعاعي  التصوير  مثل  الطبي  التصوير  تقنيات  مختلف  في  الثدي 
أورام  عن  للكشف  المغناطيسي  بالرنين  والتصوير  الصوتية  بالموجات  التصوير 
الثدي، تصنيفها، تقييمها وتحديد مدي الخطر. هذه الورقة سوق تقدم شرح 
بخصوص نظام الكشف التقليدي بمساعدة الحاسوب، التطبيقات القائمة على 
تتم  سوف  لذلك،  بالإضافة  للثدي.  الطبي  التصوير  في  الاصطناعي  الذكاء 

مناقشة التحديات والقيود المحتملة في إمكانية استخدام هذه التطبيقات.

Breast imaging faces challenges with the current 
increase in medical imaging requests and lesions 
that breast screening programs can miss. Solutions 
to improve these challenges are being sought with 
the recent advancement and adoption of artificial 
intelligent (AI)-based applications to enhance 
workflow efficiency as well as patient-healthcare 
outcomes. rtificial intelligent tools have been proposed 
and used to analyze different modes of breast imaging, 
in most of the published studies, mainly for the 
detection and classification of breast lesions, breast 
lesion segmentation, breast density evaluation, and 
breast cancer risk assessment. This article reviews the 
background of the Conventional Computer-aided 
Detection system and AI, AI-based applications 
in breast medical imaging for the identification, 
segmentation, and categorization of lesions, breast 
density and cancer risk evaluation. In addition, the 
challenges, and limitations of AI-based applications 
in breast imaging are also discussed. 
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Breast cancer is the second biggest cause of death for 
women, and early screening and identification can 

increase treatment choices and reduce mortality rates.1-3 
Consequently, several countries have applied breast 
screening programs for all women between the ages 
of 40 and 50. Over 42 million exams are undertaken 
across the world.4-6 It was reported that breast screening 
programs can miss between 15% and 35% of cancers, 
either due to error or because the cancer was not 
detectable or perceptible to radiologists at the time 
of scanning.7 Also, radiologists may face challenges 
in breast image interpretation, as breast images are 
subjected to several limitations. First, breast density can 
affect image sensitivity, which may result in breast cancer 
not being detected during the screening.8,9 Second, 
false-positive findings can be generated, which leads 
to patient discontent and increased cost and workload. 
These false-positive findings can lead to unnecessary 
follow-ups and invasive diagnostic practices such as 
biopsies.10,11 

Computer-aided detection (CAD) has been 
designed and used in breast imaging to aid radiologists 
and automate the early discovery and diagnosis of breast 
lesions.12 Studies show that a solo interpretation plus 
CAD can be used as an substitute to double reading.13,14 

However, several studies highlight the low specificity 
of the CAD systems and no improvement in cost-
effectiveness.15,16 Increasing call-back rates/false-positive 
recalls were found when CAD had been used in breast 
screening.17 This inaccuracy and unpredictability of the 
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CAD system has raised some doubts about whether 
artificial intelligence (AI) applications and recent 
advances in deep learning (DL) can help radiologists 
improve their performance in detecting breast cancer.18 
Machine learning (ML) and DL are both subsets of AI. 
The ML model requires more human interference and 
structured data to achieve results. It should be provided 
with data/inputs, image features (scuh as shape, 
width, and edge), applying a classification algorithm, 
and then the model will predict outputs. However, 
the DL model permits direct features extraction 
from the original unstructured data/inputs (such as 
image, text). Therefore, the DL model outweighs the 
ML model in the case of large datasets as no manual 
feature extraction is needed.19 A DL-CAD tool has been 
recently developed and used for breast lesion detection 
and characterization (benign or malignant).20-25 The 
literature refers to the potential role of DL-CAD 
regarding enhancing diagnostic accuracy and specificity 
in breast screening. Despite the AI strengths reported 
in the literature, several drawbacks of the existing AI 
applications have also been highlighted (Table 1).26 This 
review aims to assess the available literature to evaluate 
the readiness of the existing AI-based applications for 
breast screening and to advise the research directions in 
this field.

Conventional Computer-Aided Detection system 
(CAD) and AI-based applications. The role of computers 
in assisting radiologists in their clinical practice is 
not new. In 1998, CAD systems utilizing traditional 
ML were developed and used as a second opinion to 
analyze patients’ images in mammography and improve 
radiologists’ performance.27,28 The effectiveness of 
this instrument in breast cancer diagnosis has long 
been controversial. Literature shows that despite the 
positive impact of CAD systems on breast cancer 
screening, decreases in specificity and increases in recall 
rates are also noted. Several studies failed to ascertain 
the meaningful value of the CAD system in clinical 
practice. The relationship between CAD system usage, 
image interpretation accuracy, and recall rates has been 
documented in the literature.15 Lehman et al17 claim 
that there is no improvement in detection rate and/or 
prognostic characterization of breast cancer with the 
CAD system. 

The conventional CAD system has been established 
to aid radiologists, not to be used as a primary screening 
tool. It is designed and trained to detect specific 
features that radiologists look for, such as masses or 
classifications. This conventional system depends on 
manual features extraction by expert.29 Although the 
conventional CAD system can achieve a high sensitivity 
compared to radiologists, high false-positive rates might 
increase.30 Therefore, radiologists should screen and read 
the images as carefully as they would without CAD, 
and then use CAD as ‘spell checker’ following their 
own interpretation.28 This tool has evolved over time 
from traditional approaches to modern DL methods. 
Deep learning-based CAD can interpret vast amounts 
of data, learn features from images, learn from mistakes, 
and improve performance over time.31 This makes DL 
technology more robust to adapt different circumstances 
related to the type of scanners and patient population 
(when the training data are available).28 Currently, 
conventional/artificial neural networks (CNNs/ANNs) 
are most commonly used in DL for pattern recognition 
tasks in images.

The human brain is made up of millions of neurons, 
so CNNs are really just a composition of perceptions, 
connected in different ways and operating on different 
activation functions. Conventionals basically process 
information in a similar way to the human brain: they 
have self-learning capabilities, and will learn from 
examples (such as inputs/images) and experience (such 
as training) without the need for manually designed 
features.32 They are composed of fully connected layer, 
which creates the features map and passes it next to a 
pooling layer, where down-sampling takes place, then 
the outcome is passed to a fully connected layer to be 
assorted; and finally the output layer, which creates the 
analysis results of the data (Figure 1).33 The addition of 
layers is determined by the application and the problem 
that needs to be solved. The more layers there are, the 
more feature extraction and data abstraction can be 
achieved.34 The potential role of deep CNNs (DCNN) 
brings strong guarantees in improving the accuracy 
and promoting CAD as a clinical support system for 
medical imaging.28  

AI-based applications in breast cancer screening. The 
DCNNs can be designed and applied to detect lesions 
(such as changes in size, shape, or texture), classifications 
(such as benign/malignant), and segmentation of organs 
and tumors.18,35 This section will discuss the current 
advancement of DL for breast screening and cancer 
detection in different imaging modalities.

AI-based application and mammography. 
Mammography is a non-invasive method that is 
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Table 1 - Strengths and drawbacks of artificial intelligence (AI)-based applications in radiology.

Strengths Drawbacks
Enhance analysis:
Automated pathology screening, detection, and 
characterization.

Time and cost consuming in training and testing AI model.

Accurate classification:
Categorize image based on abnormality (benign and 
malignant).

Ethical and legal issues:
a.	 Ethics of data (How should we use, label and protect data?)
b.	 Ethics of algorithm and trained model (How does the AI 

model make decisions? How can we diminish the risk of 
patient harm from privacy breaches? Who is responsible 
for mistakes resulting from the use of the AI model?)

c.	 Ethics of practice (monitor and verify AI-driven 
autonomy) 

Extract additional required information from previous detected 
pathology.

Biased predicted outcomes due to incomplete and/or unrepresentative 
data.

Offer a second opinion which increases confidence of the diagnosis. Lack of interpretability can lead to a lack of trust and acceptance of AI 
models by physicians and patients.

Minimize interindividual variability, bias and time. Lack of strong evidence and regulations to support the use of an AI 
model.
Lack of standardized benchmarks which make it difficult to validate 
the performance of an AI model.

Figure 1 -	Conventional/Artificial neural networks (CNN/ANN) composition

often used to detect breast cancer.36 It can successfully 
identify non-palpable masses and classify between 
benign lesions and malignant tumors.37 The CAD 
system was developed to facilitate decision-making 
and to lessen the demand for numerous readers. Using 
the CAD system, on the other hand, has been linked 
to higher recall rates in breast cancer screening.14,16 
Notable advancements have been made in recent years 
on AI-based applications to analyze mammographic 

images to detect breast masses and calcifications.38-40 A 
higher performance was shown by radiologists in cancer 
detection as measured by the area under the receiver 
operating characteristic curve (AUC) when using AI 
in reduced reading times (reduced by approximately 
4.5%).39 A comparable result was stated by Pacile et 
al.40 This might imply that AI will take over the more 
routine and tedious cases, so that radiologists have 
sufficient time to focus on complex cases.39 A dramatic 
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improvement in the detection of breast cancer was noted 
among radiologists with less experience and trainees 
when they used the AI.39,41 A reasonable explanation for 
this finding may have to do with a greater acceptance 
of AI-based applications by younger radiologists. In 
addition to this, experienced radiologists may ignore 
the flags produced by the AI more often than those 
with less experience.41 Dembrower et al42 studied the 
potential change in cancer detection and found that 
AI application can detect subtle tumors that were not 
identified previously without AI. Another study has 
recently been published in which AI was shown to be 
superior to radiologists in detecting cancer in cases of 
fatty and dense breast tissue.43 Dahlblom et al44 carried 
out a study to compare the performance of an AI tool 
with digital breast tomosynthesis (DBT) in the breast 
cancer detection. They demonstrated that 44% of the 
breast cancer detected only using DBT by radiologists 
were spotted with digital mammography by the AI 
tool.44 Although almost half of the cases were identified 
with digital mammography by AI, further investigation 
with a larger sample may be warranted. 

Researchers refer to the potential advantage of AI 
tools in finding tumors with marginal indications or 
false-negative interval cancers on earlier screening exams 
that have not yet been studied.45-47 They discovered 
that AI tools could help experts in identifying up to 
19.3% of the interval cancers with minimal signs 
of malignancy.45 Numerous research compared AI 
performance to radiologist accuracy in clinical settings. 
Schaffter et al48 stated that AI-based application 
combined with a radiologist showed higher accuracy 
in breast image screening in comparison with a single 
radiologist interpretation alone. This is in line with 
Salim et al,49 who used three commercial AI systems 
and indicated that one AI application had higher 
sensitivity (81.9%) and the other two lesser sensitivity 
(67%, 67.4%) compared to the radiologist (77.4%).49 
Likewise McKinney et al’s49 study found that the AI 
tool beat the radiologist performance in sensitivity 
(56% versus [vs] 48%) and specificity (84% vs 81%).46 
This was in line with Hmida et al50 and Sapate.51 
Even though the aforementioned studies highlight 
the potential benefit of AI in improving breast cancer 
screening and image interpretation, it is also important 
to note that mammographic images were examined in 
laboratory settings with a limited number of readers, 
which makes it difficult to generalize the findings to the 
clinical practice. 

AI-based application and ultrasound (US). 
Ultrasound frequently serves as an additional 
scanning modality to mammography in breast 

screening programs. It is a common simple imaging 
technique involved in evaluation of palpable breast 
abnormalities and characterized breast masses.52 
Ultrasound scanning of the breast has several benefits 
related to other imaging modalities, including lower 
cost, lack of ionizing radiation, and the capability to 
assess images in real time.53 However, radiologists face 
challenges in interpreting breast US images due to 
blurry borders, inherent low contrast, and high levels 
of shadowing.54,55 Several researchers referred to intra-
reader variability in interpreting breast US images, and 
increased false-positive findings.56,57

Recent advances in DL have accelerated the 
development of AI-based applications for the 
automated identification, segmentation, extraction, 
and classification of breast cancer from US images.58-60 
A study conducted by Shen et al61 to identify malignant 
lesions in breast US images found that AI tools reach a 
higher area under the receiver operating characteristic 
curve (AUROC) and area under the precision-recall 
curve (AUPRC) than expert radiologists. In the same 
study, radiologists managed to reduce false positive 
rates by 37.3% and the number of biopsies requested 
by 27.8%, while maintaining the level of sensitivity.61 

Several studies proved that DL won in terms of 
classification and recognition of breast cancer based 
on US images.62-64 A study carried out by Fujioka et 
al59 highlighted the fact that DL with CNNs showed 
equal or higher AUC than radiologists in distinguishing 
benign from malignant breast lesions on US images.65 

Furthermore, it was found that DL systems showed 
high performance in breast lesion calcifications 
with an accuracy of 93.4%, a sensitivity of 88.6%, 
a specificity of 97.1%, and an area under the AUC 
of 0.947.62 Similar results were reported by Becker 
et al62 and Han et al,64 in which AI systems achieved 
higher performance in differentiating breast lesions in 
less time with accuracy similar to that of radiologists.
Another AI application  was assessed by Mango et al,66 

who highlighted an improvement in the accuracy of US 
breast lesion assessment when combining radiologists’ 
evaluation with the AI. There was a significant drop in 
the inter- and intra-observer variability. 

An AI system equipped in US machines has also been 
recently proposed, which can offer immediate decision 
of benignity or malignancy in the static US images 
after marking the region of interest (ROI).18 Kim et al24 

evaluated the diagnostic functioning of an AI system 
equipped in a US machine to discern between benign 
and malignant breast lesions. Accuracy was significantly 
higher, and the AUC was 0.72 compared to the 
radiologists. A year later in 2018, a similar performance 
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was indicated by Di Segni et al,67 who indicted a higher 
sensitivity of >90% and specificity of 70.8% in the 
assessment of focal breast lesions. -Although some of 
the above AI-based applications are approved in some 
countries, until now there are yet no guides to endorse 
the AI-based applications alongside US in daily clinical 
practice.68

AI-based application and magnetic resonance 
imaging (MRI). Breast MRI shows high sensitivity in 
breast cancer detection.68 Dynamic contrast material 
enhanced (DCE) MRI of the breast screening showed 
the highest sensitivity compared to the other imaging 
modalities (such as mammogram and US).69 However, 
false-negative results can be obtained with a reported 
sensitivity of 90.9% for invasive cancer and 73% for 
ductal carcinoma.70 Several studies reviewed breast 
MRI examinations retrospectively and found that some 
breast lesions had been either missed, misdiagnosed, or 
mismanaged.71,72 This may be attributed to the various 
factors such as dense breast tissue, visual examination 
pattern, incorrect assessment, image quality, distraction, 
fatigue, workload, poor enhancement, or misdiagnose 
enhancement.73-75 Automated detection of breast 
carcinomas in MRI images via AI-based applications 
(such as CNN) has been indicated for systematic 
diagnostic interpretation and identification of tumors 
on images stored on an archiving system.76,77 

Literature reported the utilization of DL for MRI 
breast screening75,78-81 and most popular role of the 
proposed AI-based applications have included tasks, 
such as detection, segmentation, and classification of 
lesions in MRI images.75,78,82-84 A decent performance 
was reported by Truhn et al,85 who used CNN to 
categorize segmented lesions as benign or malignant, 
reached AUC of 0.88, which was superior to radiomics 
analysis (AUC=0.81); however, this was inferior to 
the breast radiologist’s interpretation (AUC = 0.98).85 

Similarly reported by Herent et al,80 who used the DL 
model to identify and categorize breast lesions as benign 
or malignant, achieving an AUC of 0.816. Ayatollahi 
et al86 promoted a DL model for the detection of 
breast lesions in ultrafast DCE-MRI sequences. This 
proposed model achieved a high detection rate of 0.90 
(0.876-0.934), sensitivity of 0.95 (0.934–0.980), and a 
detection rate of benign lesions of 0.81 (0.751-0.871). 

An improvement in radiologists’ clinical performance 
with the assistance of an AI tool was also reported by 
Adachi et al.81 A study carried out by Eskreis-Winkler 
et al87 showed improvement in accuracy (92.8%), 
sensitivity (89.5%), and specificity (94.3%) of detection 
of breast cancer with the assistance of an AI tool. They 
also found that using DL tools could lead to a reduction 

in reading time (3 and 45 seconds per case).87 This 
was consistent with Jiang et al,88 who evaluated the 
clinical performance of radiologists in detecting breast 
cancer at DCE MRI, and found that AUC showed an 
improvement in accuracy from 0.71 to 0.76 when AI 
was used.69 This was reinforced recently by Wu et al,89 
who found that the proposed CNN model based on 
DCE MRI achieved diagnostic accuracy of 87.7%, 
precision of 91.2%, sensitivity of 86.1%, and AUC 
of 91.2%. In addition, it was highlighted that DL 
can be a favorable tool to increase the proficiency and 
accessibility of breast MRI.88 Jing et al88 found that the 
proposed AI model achieved an AUC of 0.81 with a 
15.7% reduction in workload and a 16.6% reduction 
in scanning time.

In addition, AI and radiomics approach have gained 
popularity in medical imaging to facilitate disease 
diagnosis (such as breast lesions).89,90 In an MRI-based 
radiomics and AI study, entropy of breast lesions found 
to be a worth parameters to differentiate between 
malignant and benign breast lesions.90,91 Fusco et al92 

reported consistent findings. Another study carried out 
by Crivelli et al93 revealed that radiomics values were 
lower than those suspected by expert breast radiologists. 

Thus, it is essential to notice that the promising evidence 
of radiomics still requires further evaluation and many 
issues need to be solved prior to it being ready to be 
implemented in clinical practice. 

The above studies show that AI-based applications 
are a promising tool for breast image screening and 
cancer detection. However, several challenges and 
limitations need to be considered. Picture Archiving 
and Communication Systems (PACS) and the Digital 
Imaging and Communications in Medicine (DICOM) 
have ensured that datasets required to train and test 
AI-based applications are prepared for easy access 
and recovery. Yet, organizing the datasets (labeling, 
annotation, segmentation) represents a major issue in 
developing AI-based applications as trained professionals 
(clinical scientists and informaticians) are required and 
this is a time-consuming and high-cost process.94-96 
Comparing the clinical value of different AI-based 
applications is challenging due to the variation in the 
datasets, the approach of testing, and validation of the 
tool performance.39,97,98 This is combined with the lack 
of high-quality, categorized, labeled datasets, which are 
representative as well as including a good distribution 
of abnormalities, demographics, and breast density.18 
Inappropriate datasets and poor image quality may 
limit the conspicuity of the breast lesion’s characters or 
offer inadequate inputs for the AI system.99,100
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Although the reviewed studies in this article reported 
encouraging findings of the proposed AI model’s 
accuracy, most of these studies were retrospective, 
based on relatively small datasets, came from single 
institutions, and identified several methodological 
restrictions that negatively impact on the applicability 
and strength of the AI-based applications in the 
breast screening setting. Using small datasets from the 
same source may raise concerns regarding the depth, 
quality, and representativeness of the images that are 
used to teach the AI-based applications and increase 
the possibility of bias and overfitting. In addition, 
datasets enriched with malignant lesions or suspicious 
abnormalities were also used to train the AI tool. This 
approach may assist the feasibility of designing and 
developing an AI tool; conversely, the applicability and 
accuracy of the proposed AI tool performance will still 
be unclear or overestimated as the datasets may not 
reflect the real-world screening of detectable breast 
cancer. Several factors may affect the performance of the 
AI-based applications, in particular patient populations 
such as heterogeneity of the breast cancer risk factors, 
and imaging characters of the populations. Therefore, 
a larger validation dataset from diverse screening 
environments and populations is required to ensure 
that AI tools are ready for use in real clinical practice.

In conclusion, this review of the available research 
on AI-based applications and breast cancer screening 
provides insight into the value of AI tools combined with 
diverse imaging modalities in breast lesion detection 
and diagnosis. The shift from the conventional CAD 
system to the advanced AI tools such as DL-CAD has 
the potential to reduce false-positive findings, increase 
diagnostic accuracy, improve radiologist performance, 
and assist with decision-making. However, the current 
evidence regarding the use of AI-based applications 
in the detection of the breast cancer is not yet fully 
optimized due to a lack of standardized methodology 
and prospective studies, the possibility of bias, and a 
lack of depth and quality. Future randomized controlled 
trials and cohort studies in large-scale sample with high-
quality evidence are required to consider the future use 
of AI-based applications in breast cancer screening.
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