Over expression of vascular endothelial growth factor in correlation to Ki-67, grade, and stage of breast cancer

Esraah S. Al-Harris, MBChB, MSc, As’ad A. Al-Janabi, MSc, PhD (Path), Kaswer M. Al-Torigahi, MBChB, FICMS (Path), Akeel A. Yasseen, MSc (UK), PhD (UK).

ABSTRACT

Objective: To assess the significance of vascular endothelial growth factor (VEGF) protein over expression in human breast cancer, and its possible correlation with cell proliferation marker (Ki-67), grade and stage of breast cancer.

Methods: We carried out this study at the Department of Pathology, Kufa University, between November 2006 and September 2007. A retrospective study was employed on paraffin-embedded blocks from 52 female patients with breast cancer. A group of 21 patients with benign breast lesions was included for comparison and 14 cases of normal breast tissue as a control group. This investigation designed to employ immunohistochemistry using Avidin-Biotin Complex (ABC) method for detection of both VEGF and Ki-67.

Results: A total of 87 samples was included. Vascular endothelial growth factor immunoeexpression was considered as positive in 61.5% of malignant and in 19% of benign breast lesions. No over expression sign has been noticed in normal breast tissue ($p<0.005$). No significant difference in VEGF over expression among different histological types of breast cancer ($p>0.05$). Vascular endothelial growth factor immunostaining was positively correlated with Ki-67, grade, stage, lymph node metastasis, and recurrence of breast cancer ($p<0.05$). No such correlation has been seen when the age of the patients has been considered.

Conclusion: Vascular endothelial growth factor Vascular endothelial growth factor plays an important role in pathogenesis of breast cancer evolution, and supports the evidence of its role in angiogenesis and cell survival. This study recommended that the blocking of VEGF may be a target for blocking angiogenesis and hence improving the efficacy of anti-cancer therapy.

From the Department of Pathology and Forensic Medicine, Faculty of Medicine, Kufa University, Kufa, Iraq.

Received 13th February 2008. Accepted 1st July 2008.

Address correspondence and reprint requests to: Dr. Akeel Yasseen, Professor, Department of Pathology and Forensic Medicine, Faculty of Medicine, Kufa University, Kufa, PO Box 18, Iraq. Tel. +964 7801250748. Fax. +964 (333) 60328 E-mail: a.yasseen@hotmail.com
It is well established that breast cancer is still the most common malignancy among women all over the globe. However this type of malignancy has been considered as an angiogenen-dependent disease in which angiogenesis is an important process in its development, invasion and metastasis. Indeed, breast cancer angiogenesis is attributed largely to the increase in the production of VEGF by the tumor cells and to the cells within the tumor stroma. Vascular endothelial growth factor is the most potent angiogenic cytokines and it is sometimes known as VEGF-A or VPF (vascular permeability factor). The vascular permeability factor is the best studied and understood member of VEGF ligand family. Vascular endothelial growth factor - A exists in at least 6 isoforms formed from alternative splicing of VEGF mRNA. Vascular endothelial growth factor exerts its effect through binding to 2 related receptor tyrosine kinase (RTKs); VEGFR-1 and VEGFR-2. Furthermore, VEGF also interact with a family of RTKs act as co-receptor known as neuropilin one and neuropilin 2. It has long been shown that VEGF is a well recognized stimulus of angiogenesis in various types of solid tumors; including breast cancer. A large number of studies demonstrate the essential role of VEGF as a prognostic marker for the aggressiveness of breast cancer. Vascular endothelial growth factor expression and intensity were used as indicators of significant inferior outcome in patients with early breast cancer and with co expression of several biomarkers in breast cancer. The present study is designed to assess the significance of VEGF protein over expression in human breast cancer, and its possible correlation with Ki-67 (cell proliferation marker), grade, stage, and recurrence of breast cancer.

Methods. This study was conducted at the Department of Pathology and Forensic Medicine, Faculty of Medicine, Kufa University from November 2006 through September 2007. Fifty-two female patients with breast cancer (41 infiltrating ductal carcinoma [IDC], 3 infiltrating lobular carcinoma [ILC], 6 medullary carcinoma, one ductal carcinoma in situ [DCIS], and one inflammatory carcinoma), were enrolled in this study. Soft tissue tumors were excluded as they did not fulfill the criteria or comply with our aim. All specimens were collected from the major hospitals and some of the private clinical laboratories in Najaf governorate, in the middle of Iraq. The present investigations has been approved by the Middle Euphrates Center For Cancer Research and patients were informed on the outcome of this work. Ages of the referred patients were ranging from 30-70 years, with a median age of 50 years. A group of 21 patients with benign breast lesions was included for comparison, while the control group included 14 cases of normal breast tissue. Avidin-Biotin Complex (ABC) method was employed for immunohistochemical detection of VEGF and Ki-67 according to the procedure which has been recommended by other investigators.

Statistical analysis. Association between immunohistochemical scorer and clinicopathological variables of tissue specimens were evaluated by x^2 test; Chi square test at level of significance alpha ≤0.05 and correlation regression test (r at a significant level of 0.3). $p<0.05$ was considered statistically significant.

Results. A positive VEGF immunoexpression was detected in 61.5% of malignant breast tissue, and in 19% of benign breast lesions. No positive over expression has been observed in normal breast tissues ($p<0.001$, $p<0.005$ and $p<0.005$) (Figure 1). Vascular endothelial growth factor over-expression was well correlated to Ki-67 ($r=0.93$, $p<0.05$) (Table 1, Figure 2). Vascular endothelial growth factor immunohistochemical analysis in relation to grade of tumor revealed that 100% (2 out of 2) grade I were positive, 5 (55.6%) out of 9 cases of grade II were positive, 25 out of 41 (61%) cases of grade III were positive. It seems that the detection rate of VEGF is well correlated to the grade of tumor, ($r=0.99$, $p<0.05$) (Table 2). The intensity of VEGF looks to be well correlated to the grade of tumor (with positive regression $r=0.97$), the intensity increased as the grade of the tumor increases, and a high proportion of VEGF expression was reported among those with poorly differentiated breast cancer, while less proportion of VEGF was reported among those with mild or moderate differentiated breast cancer with a significant difference ($p<0.05$), indicating that VEGF positive breast cancers are biologically aggressive and detected more frequently in high grade than low grade (Grade III versus Grade I, II) ($p<0.05$, $r=0.99$). Also VEGF over-expression was detected more frequently in recurrent breast cancer; 50% of recurrent breast cancer (4 out of 8) were expressing VEGF immuneoreaction, while 36.4% of those presented for the first time (recurrence negative patients) were VEGF positive, with a significant difference between these 2 groups ($\chi^2 = 5.32$, $p<0.05$) (Table 3).

Vascular endothelial growth factor over-expression was detected more frequently in node positive than in node negative breast cancers; 17 cases (68%) of node-positive breast cancer found to have positive VEGF overexpression, while only 5 cases (41.7%) of node-negative breast cancer showed VEGF overexpression, with significant and correlation between these 2 groups ($r=0.97$, $p<0.05$) (Table 3). Vascular endothelial growth factor immunohistochemical expression was
reported in 100% (one out of one) of stage 0 CIS, in 42.9% (3 out of 7) of stage II, in 65.2% (15 out of 23) of stage III, and in 50% (3 out of 3) cases of stage IV. There was a significant positive correlation between VEGF overexpression and the stage of tumor (r=0.95) (p<0.05), and a higher proportion of cases was found in stage III and IV (Table 4).

Discussion. The present study was limited to the middle Euphrates area of Iraq. Any sporadic cases from elsewhere were excluded. Vascular endothelial growth factor (VEGF-A) is a homodimeric glycoprotein that exists in at least 7 isoforms formed from alternative splicing of VEGF mRNA. The 4 main isoforms are VEGF 121, VEGF 165, VEGF 189 and VEGF 206.10,11 The antibody used in this study labels the VEGF-121, VEGF-165, and VEGF-189 isoforms of VEGF.19,20 Our result showed that 4 out of 21 (19%) of benign breast lesions were VEGF positive. Other investigators have noticed this finding as well.21-23 The results have also clarified that 61.5% of 52 cases of breast cancer were expressing VEGF immunohistochemical cytoplasmic

Table 1 - Frequency of immunoexpression of vascular endothelial growth factor (VEGF) and Ki-67 in normal, benign, and malignant breast tissue and their correlation.

<table>
<thead>
<tr>
<th>Pathological lesion</th>
<th>VEGF Positive</th>
<th>VEGF Negative</th>
<th>Ki-67 Positive</th>
<th>Ki-67 Negative</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal n=14</td>
<td>0</td>
<td>14 (100)</td>
<td>0</td>
<td>14 (100)</td>
<td>NS</td>
</tr>
<tr>
<td>Benign breast lesions n=21</td>
<td>4 (19.0)</td>
<td>17 (81.0)</td>
<td>2 (9.5)</td>
<td>19 (90.5)</td>
<td>NS</td>
</tr>
<tr>
<td>Malignant breast lesions n=52</td>
<td>32 (61.5)</td>
<td>20 (38.5)</td>
<td>28 (53.9)</td>
<td>24 (46.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Total</td>
<td>36 (41.4)</td>
<td>51 (58.6)</td>
<td>30 (34.5)</td>
<td>57 (65.5)</td>
<td></td>
</tr>
</tbody>
</table>

\[x^2=44.66, \text{R}=0.93, \ p<0.05\]

Table 2 - The correlation of vascular endothelial growth factor (VEGF) immunohistochemical expression with grade of tumor and age of the patient.

<table>
<thead>
<tr>
<th>Grade of tumor</th>
<th>VEGF immunostaining</th>
<th>Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>n (%)</td>
</tr>
<tr>
<td>I</td>
<td>2 (100)</td>
<td>0 (0)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>II</td>
<td>5 (55.6)</td>
<td>4 (44.4)</td>
<td>9 (17.3)</td>
</tr>
<tr>
<td>III</td>
<td>25 (61.0)</td>
<td>16 (39.0)</td>
<td>41 (78.9)</td>
</tr>
<tr>
<td>Total</td>
<td>32 (61.6)</td>
<td>20 (38.5)</td>
<td>52 (100)</td>
</tr>
</tbody>
</table>

\[r=0.99, \ p<0.05\]
staining in their histological sections (Table 1, Figure 1). Previous investigators have shown similar results although the predictive value was slightly variable ranging from 60.5-67.7%. However, our findings extend within the same range although technical skills might be behind this variability. Our work have demonstrated a statistically significant association between VEGF and Ki-67 overexpression in breast cancer ($p < 0.05$). Furthermore, we found that Ki-67 overexpression was positively correlated to VEGF ($r = 0.93$, $p < 0.05$) as indicated by Xie et al. and not with that of Li et al., who did not reach similar results. Such differences most probably due to technical skills, type of materials which has been used, number of patients which should be included in the study and so forth.

Furthermore, our results support more recent findings of the presence of significant positive correlation between VEGF over expression and the grade of breast cancer as grouped in Table 2. This finding indicates very clearly, the involvement of VEGF gene in promoting tumor angiogenesis and the extent of its role in the pathogenesis of human cancer. Our results also showed that the VEGF expression is not related to age of the patient with breast cancer (Table 2). This finding is similar to that reported by Gasparini et al., 1997 and Yi W et al., 2003; who proposed that VEGF expression is not correlated to age of breast cancer patients.

On the other hand, the significant difference between recurrent and non-recurrent breast cancers which has been demonstrated in our study ($p < 0.05$) (Table 3) may reflect the more aggressive behavior of VEGF-positive recurrent breast cancer although many investigators showed that VEGF over-expression is directly related to the recurrence of breast cancer. As presented in Table 3, VEGF overexpression is significantly higher in node positive breast cancer than node negative breast cancer ($p < 0.05$). This finding supports our previous finding that indicates positive correlation between VEGF over expression with the grade and stage of cancer which confirm the contribution of VEGF factor in breast cancer development, evolution, and metastasis. However, other investigators have conducted similar work and have shown similar results. Tumors with insertions, deletions or nonsense mutations were found to have the highest degree of correlation with increased VEGF expression which gives rise to truncated proteins. This study also discussed the significant correlation in VEGF overexpression to the stage of breast cancer ($r = 0.95$, $p < 0.05$) (Table 4) which indicates the importance of pathological assessment and staging of breast cancer in any future study and confirms the work of other researchers who reached the same conclusion.

Table 3 - Relation of vascular endothelial growth factor (VEGF) immunohistochemical overexpression to the recurrence of breast cancer and lymph node (LN) status.

<table>
<thead>
<tr>
<th>Recurrence and LN status</th>
<th>VEGF immunostaining</th>
<th>Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>28 (3.6)</td>
<td>16 (36.4)</td>
<td>44 (84.6)</td>
</tr>
<tr>
<td>Negative</td>
<td>4 (50.0)</td>
<td>4 (50.0)</td>
<td>8 (15.8)</td>
</tr>
<tr>
<td>LN status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>8 (32.0)</td>
<td>17 (68.0)</td>
<td>25 (67.6)</td>
</tr>
<tr>
<td>Negative</td>
<td>7 (58.3)</td>
<td>5 (41.7)</td>
<td>12 (32.4)</td>
</tr>
</tbody>
</table>

$r = 0.99$, $p < 0.05$

Table 4 - Vascular endothelial growth factor (VEGF) over expression in correlation to stage of breast cancer.

<table>
<thead>
<tr>
<th>Stage of tumor</th>
<th>VEGF immunostaining</th>
<th>Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>1 (100)</td>
<td>0 (0)</td>
<td>1 (2.7)</td>
</tr>
<tr>
<td>II</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>III</td>
<td>3 (42.9)</td>
<td>4 (57.1)</td>
<td>7 (18.9)</td>
</tr>
<tr>
<td>IV</td>
<td>15 (65.2)</td>
<td>8 (34.8)</td>
<td>23 (62.6)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (50.0)</td>
<td>3 (50.0)</td>
<td>6 (16.2)</td>
</tr>
</tbody>
</table>

$r = 0.99$, $p < 0.05$
These data indicate that human breast cancer has the capacity to over-express VEGF gene and suggest that in some instances VEGF may directly or indirectly promote breast cancer growth. The increased VEGF expression may be a key event in the pathogenesis of human breast cancer.

In conclusion, VEGF plays an important role in pathogenesis of breast cancer evolution. We may recommend that blocking VEGF could be a target for inhibition of angiogenesis and hence improving the efficacy of anti-cancer therapy, although further analysis of the expression of angiogenic factors in clinical tumors sample might provide more information about genetic involvement in the regulation of angiogenesis.

References

