Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia

Suliman A. Alsagaby, Fahad A. Alhumaydhi


Chronic lymphocytic leukemia (CLL) is an incurable malignant disease of B-lymphocytes characterized by drastically heterogeneous clinical courses. Proteomics is an advanced approach that allows a global profiling of protein expression, providing a valuable chance for the discovery of disease-related proteins. In the last 2 decades, several proteomics studies were conducted on CLL to identify aberrant protein expression underpinning the malignant transformation and progression of the disease. Overall, these studies provided insights into the pathology and prognosis of CLL and reveal protein candidates with the potential to serve as biomarkers and/or therapeutic targets of the tumor. The major findings reported in these studies are discussed here.


Saudi Med J 2019; Vol. 40 (4): 317-327
doi: 10.15537/smj.2019.4.23598

How to cite this article:
Alsagaby SA, Alhumaydhi FA. Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia. Saudi Med J. 2019 Apr;40(4):317-327. doi: 10.15537/smj.2019.4.23598.





CLL; Proteomics; Biomarkers; Therapeutic targets

Full Text:



Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers 2017; 3: 16096.

Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer 2016; 16: 145-162.

Montserrat E. Prognostic and Predictive Markers in CLL. Clin Lymphoma Myeloma Leuk 2017; 17: S197-S200.

Alsagaby SA, Brennan P, Pepper C. Key Molecular Drivers of Chronic Lymphocytic Leukemia. Clin Lymphoma Myeloma Leuk 2016; 16: 593-606.

Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840-1847.

Dürig J, Naschar M, Schmücker U, Renzing-Köhler K, Hölter T, Hüttmann A, et al. CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia 2002; 16: 30-35.

Rassenti LZ, Jain S, Keating MJ, Wierda WG, Grever MR, Byrd JC, et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 2008; 112: 1923-1930.

Majid A, Lin TT, Best G, Fishlock K, Hewamana S, Pratt G, et al. CD49d is an independent prognostic marker that is associated with CXCR4 expression in CLL. Leuk Res 2011; 35: 750-756.

Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910-1916.

Shustik C, Bence-Bruckler I, Delage R, Owen CJ, Toze CL, Coutre S. Advances in the treatment of relapsed/refractory chronic lymphocytic leukemia. Ann Hematol 2017; 96: 1185-1196.

Larance M, Lamond AI. Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 2015; 16: 269-281.

Tyers M, Mann M. From genomics to proteomics. Nature 2003; 422: 193-197.

Díez P, Góngora R, Orfao A, Fuentes M. Functional proteomic insights in B-cell chronic lymphocytic leukemia. Expert Rev Proteomics 2017; 14: 137-146.

Cochran DAE, Evans CA, Blinco D, Burthem J, Stevenson FK, Gaskell SJ, et al. Proteomic analysis of chronic lymphocytic leukemia subtypes with mutated or unmutated Ig VH genes. Mol Cell Proteomics 2003; 2: 1331-1341.

Boelens J, Vanden Berghe W, Haegeman G, Janssens A, Philippé J, et al. Baseline nucleophosmin status in mutated (M) versus unmutated (U) immunoglobulin B-CLL is a nuclear reflection of different signal transduction physiology. Annals of Oncology 2005; 106: 5005-5005.

Colombo E, Marine J-C, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: 529.

Zenz T, Kröber A, Scherer K, Häbe S, Bühler A, Benner A, et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 2008; 112: 3322-3329.

Barnidge DR, Jelinek DF, Muddiman DC, Kay NE. Quantitative protein expression analysis of CLL B cells from mutated and unmutated IgVH subgroups using acid-cleavable isotope-coded affinity tag reagents. J Proteome Res 2005; 4: 1310-1317.

Lascorz J, Bevier M, Schönfels WV, Kalthoff H, Aselmann H, Beckmann J, et al. Polymorphisms in the mitochondrial oxidative phosphorylation chain genes as prognostic markers for colorectal cancer. BMC Med Genet 2012; 13: 31-38.

Mayevsky A. Mitochondrial function and energy metabolism in cancer cells: past overview and future perspectives. Mitochondrion 2009; 9: 165-179.

Eagle GL, Zhuang J, Jenkins RE, Till KJ, Jithesh PV, Lin K, et al. Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia. Mol Cell Proteomics 2015; 14: 933-945.

Calderwood DA. Integrin activation. J Cell Sci 2004; 117: 657-666.

Kinashi T, Katagiri K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol Lett 2004; 93: 1-5.

Till KJ, Harris RJ, Linford A, Spiller DG, Zuzel M, Cawley JC. Cell motility in chronic lymphocytic leukemia: defective Rap1 and αLβ2 activation by chemokine. Cancer Res 2008; 68: 8429-8436.

Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F, et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 2008; 111: 865-873.

Burger JA, Gribben JG. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol 2014; 24: 71-81.

Girbl T, Hinterseer E, Melanie Grössinger E, Asslaber D, Oberascher K, Weiss L, et al. CD40-mediated activation of chronic lymphocytic leukemia cells promotes their CD44-dependent adhesion to hyaluronan and restricts CCL21-induced motility. Cancer Res 2013; 73: 561-570.

Fedorchenko O, Stiefelhagen M, Peer-Zada AA, Barthel R, Mayer P, Eckei L, et al. CD44 regulates the apoptotic response and promotes disease development in chronic lymphocytic leukemia. Blood 2013; 121: 4126-4136.

Díez P, Ibarrola N, Dégano RM, Lécrevisse Q, Rodriguez-Caballero A, Criado I, et al. A systematic approach for peptide characterization of B-cell receptor in chronic lymphocytic leukemia cells. Oncotarget 2017; 8: 42836-42846.

Robak T, Robak P. BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunoly 2013; 32: 358-376.

Kashuba E, Eagle GL, Bailey J, Evans P, Welham KJ, Allsup D, et al. Proteomic analysis of B-cell receptor signaling in chronic lymphocytic leukaemia reveals a possible role for kininogen. J Proteomics 2013; 91: 478-485.

Campbell DJ. The kallikrein–kinin system in humans. Clin Exp Pharmacol Physiol 2001; 28: 1060-1065.

Adamopoulos PG, Kontos CK, Papageorgiou SG, Pappa V, Scorilas A. KLKB1 mRNA overexpression: A novel molecular biomarker for the diagnosis of chronic lymphocytic leukemia. Clin Biochem 2015; 13: 849-854.

Guarini A, Chiaretti S, Tavolaro S, Maggio R, Peragine N, Citarella F, et al. BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgVH unmutated chronic lymphocytic leukemia (CLL) cells. Blood 2008; 112: 782-792.

Perrot A, Pionneau C, Nadaud S, Davi F, Leblond V, Jacob F, et al. A unique proteomic profile upon surface IgM ligation in unmutated chronic lymphocytic leukemia. Blood 2011; 118: e1-e15.

Lankat Buttgereit B, Göke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell 2009; 101: 309-317.

Brignone C, Bradley KE, Kisselev AF, Grossman SR. A post-ubiquitination role for MDM2 and hHR23A in the p53 degradation pathway. Oncogene 2004; 23: 4121.

Yeomans A, Thirdborough SM, Valle-Argos B, Linley A, Krysov S, Hidalgo MS, et al. Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation. Blood 2016; 127: 449-457.

Jeon H-K, Ahn J-H, Choe J, Park JH, Lee TH. Anti-IgM induces up-regulation and tyrosine-phosphorylation of heterogeneous nuclear ribonucleoprotein K proteins (hnRNP K) in a Ramos B cell line. Immunol Lett 2005; 98: 303-310.

Gallardo M, Zhang X, McArthur M, Manshouri T, Post SM. Amplification of hnRNP K Drives c-Myc-dependent malignancies and represent a novel therapeutic opportunity for hematologic malignancies. Blood 2015; 126: 468.

Gallardo M, Lee HJ, Zhang X, Pageon LR, Multani A, Reschke M, et al. hnRNP K overexpression synergizes with mutant NPM1 to drive acute myeloid leukemia progression. Blood 2014; 21: 2382-2382.

Carballo E, Colomer D, Vives-Corrons JL, Blackshear PJ, Gil J. Characterization and purification of a protein kinase C substrate in human B cells. Identification as lymphocyte-specific protein 1 (LSP1). J Immunol 1996; 156: 1709-1713.

Alkan S, Huang Q, Ergin M, Denning MF, Nand S, Maududi T, et al. Survival role of protein kinase C (PKC) in chronic lymphocytic leukemia and determination of isoform expression pattern and genes altered by PKC inhibition. Am J Hematol 2005; 79: 97-106.

Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521-529.

Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S, et al. NOTCH1 mutations in+ 12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of+ 12 CLL. Haematologica 2012; 97: 437-441.

Mansouri L, Cahill N, Gunnarsson R, Smedby KE, Tjönnfjord E, Hjalgrim H, et al. NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia 2013; 27: 512-514.

Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M, et al. functional impact of Notch1 mutations in chronic lymphocytic leukemia. Leukemia 2014; 28: 1060-1070.

Díez P, Lorenzo S, Dégano RM, Ibarrola N, González-González M, Nieto W, et al. Multipronged functional proteomics approaches for global identification of altered cell signalling pathways in B-cell chronic lymphocytic leukaemia. Proteomics 2016; 16: 1193-1203.

Smucker EJ, Turchi JJ. TRF1 inhibits telomere C-strand DNA synthesis in vitro. Biochemistry 2001; 40: 2426-2432.

Kishi S, Wulf G, Nakamura M, Lu KP. Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells with short telomeres and is down-regulated in human breast tumors. Oncogene 2001; 20: 1497-1508.

Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 2007; 282: 24731-24742.

Watari A, Li Y, Higashiyama S, Yutsudo M. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF. Exp Cell Res 2012; 318: 187-195.

Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 2015; 16: 393-405.

Johnston HE, Carter MJ, Larrayoz M, Clarke J, Garbis SD, Oscier D, et al. Proteomics profiling of CLL versus healthy B-cells identifies putative therapeutic targets and a subtype-independent signature of spliceosome dysregulation. Mol Cell Proteomics 2018; 17: 776-791.

Rossi D. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904-6908.

Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 2012; 44: 1236-1242.

Castro JE, Prada CE, Loria O, Kamal A, Chen L, Burrows FJ, et al. ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood 2005; 106: 2506-2512.

Miguet L, Béchade G, Fornecker L, Zink E, Felden C, Gervais C, et al. Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. J Proteome Res 2009; 8: 3346-3354.

Fan L, Miao Y, Wu Y-J, Wang Y, Guo R, Wang L, et al. Expression patterns of CD200 and CD148 in leukemic B-cell chronic lymphoproliferative disorders and their potential value in differential diagnosis. Leuk Lymphoma 2015; 56: 3329-3335.

Boyd RS, Adam PJ, Patel S, Loader JA, Berry J, Redpath NT, et al. Proteomic analysis of the cell-surface membrane in chronic lymphocytic leukemia: identification of two novel proteins, BCNP1 and MIG2B. Leukemia 2003; 17: 1605-1612.

Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15: 306-312.

Paiva B, Corchete LA, Vidriales M-B, Puig N, Maiso P, Rodriguez I, et al. Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood 2016; 127: 1896-1906.

Patel SJ, Trivedi GL, Darie CC, Clarkson BD. The possible roles of B-cell novel protein-1 (BCNP-1) in cellular signalling pathways and in cancer. J Cell Mol Med 2017; 21: 456-466.

Chen C, Puvvada S. Prognostic Factors for Chronic Lymphocytic Leukemia. Curr Hematol Malig Rep 2016; 11: 37-42.

Voss T, Ahorn H, Haberl P, Döhner H, Wilgenbus K. Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia. Int J Cancer 2001; 91: 180-186.

Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 2016; 76: 7-9.

Zhang P, Liu B, Seo MS, Rhee SG, Obeid LM. Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 1997; 272: 30615-30618.

Täger M, Kröning H, Thiel U, Ansorge S. Membrane-bound proteindisulfide isomerase (PDI) is involved in regulation of surface expression of thiols and drug sensitivity of B-CLL cells. Exp Hematol 1997; 25: 601-607.

Bhattacharyya S, Dudeja PK, Tobacman JK. ROS, Hsp27, and IKKβ mediate dextran sodium sulfate (DSS) activation of IκBa, NFκB, and IL-8. Inflamm Bowel Dis 2008; 15: 673-683.

Arrigo AP. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 1998; 379: 19-26.

Alsagaby S, Brewis I, Pepper C, Fegan C, Brennan P. Analysis of human B-cells with quantitative and sub-cellular proteomics. Immunology 2010; 131: 115.

Alsagaby SA, Khanna S, Hart KW, Pratt G, Fegan C, Pepper C, et al. Proteomics-based strategies to identify proteins relevant to chronic lymphocytic leukemia. J Proteome Res 2014; 13: 5051-5062.

Pepper C, Hewamana S, Brennan P, Fegan C. NF-κB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncology 2009; 5: 1027-1037.

Billard C. Apoptosis inducers in chronic lymphocytic leukemia. Oncotarget 2014; 5: 309.

Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A 2002; 99: 6955-6960.

Gaudio E, Spizzo R, Paduano F, Luo Z, Efanov A, Palamarchuk A, et al. Tcl1 interacts with Atm and enhances NF-κB activation in hematologic malignancies. Blood 2012; 119: 180-187.

Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ, et al. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114: 4675-4686.

Cross SS, Hamdy FC, Deloulme JC, Rehman I. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 2005; 46: 256-269.

Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D. S100A8 and S100A9 activate MAP kinase and NF-κB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 2006; 312: 184-197.

Bracken CP, Wall SJ, Barré B, Panov KI, Ajuh PM, Perkins ND. Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res 2008; 68: 7621-7628.

Abboudi Z, Patel K, Naresh KN. Cyclin D1 expression in typical chronic lymphocytic leukaemia. Eur J Haematol 2009; 83: 203-207.

Jacobelli J, Friedman RS, Conti MA, Lennon-Dumenil A-M, Piel M, Sorensen CM, et al. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA–regulated adhesions. Nat Immunol 2010; 11: 953-961.


  • There are currently no refbacks.

Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.