Skip to main content

Androgen Receptor Coactivators and Prostate Cancer

  • Chapter
Book cover Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

Among USA men, prostate cancer (PC) is the second most common cause of death from cancer. Thus, the etiology, prevention, and treatment of the disease are a major health concern. Development and differentiation of the prostate is androgen dependent and PC, too, is androgen dependent (1). Consequently, some form of androgen deprivation is the primary treatment for metastatic PC. Although effective initially in reducing tumor burden, the tumors become resistant to androgen deprivation and recur within a relatively short period of time. The actions of androgens are mediated by the androgen receptor (AR) a hormone-activated transcription factor, which belongs to the large nuclear receptor superfamily of ligand-activated transcription factors (2, 3). AR differs from many of the other receptors in that it has two natural endogenous ligands. Testosterone (T) (Fig. 1) is the major circulating androgen and is the major hormone in most tissues. T is produced in the testis and is converted to 5α-dihydrotestosterone (DHT) (Fig. 1) by the enzyme 5α-reductase in the prostate as well as in selected other tissues including skin. DHT is a higher affinity ligand and is functionally the most important androgen in the prostate. In addition, there are a number of androgen metabolites including DHEA and androstenediol, which have much lower affinities for AR. Although these androgens are not thought to play a major role in AR action in androgen-repleted males, they may activate the AR when levels of T and DHT are reduced as a result of androgen ablation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold JT, Isaacs JT (2002) Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell’s fault. Endocr Relat Cancer 9:61–73.

    Article  PubMed  CAS  Google Scholar 

  2. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895.

    Article  PubMed  CAS  Google Scholar 

  3. McEwan IJ (2004) Molecular mechanisms of androgen receptor-mediated gene regulation: structure–function analysis of the AF-1 domain. Endocr Relat Cancer 11:281–293.

    Article  PubMed  CAS  Google Scholar 

  4. Walcott JL, Merry DE (2002) Trinucleotide repeat disease. The androgen receptor in spinal and bulbar muscular atrophy. Vitam Horm 65:127–147.

    Article  PubMed  CAS  Google Scholar 

  5. Bevan CL, Hoare S, Claessens F, et al. (1999) The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 19:8383–8392.

    PubMed  CAS  Google Scholar 

  6. Simental JA, Sar M, Lane MV, et al. (1991) Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem 266:510–518.

    PubMed  CAS  Google Scholar 

  7. He B, Kemppainen JA, Wilson EM (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275:22986–22994.

    Article  PubMed  CAS  Google Scholar 

  8. Sack JS, Kish KF, Wang C, et al. (2006) Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci USA 98:4904–4909.

    Article  Google Scholar 

  9. Beato M, Chalepakis G, Schauer M, et al. (1989) DNA regulatory elements for steroid hormones. J Steroid Biochem 32:737–747.

    Article  PubMed  CAS  Google Scholar 

  10. Migliaccio A, Castoria G, Di Domenico M, et al. (2000) Steroid-induced androgen receptor–oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J 19:5406–5417.

    Article  PubMed  CAS  Google Scholar 

  11. Agoulnik IU, Weigel NL (2006) Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem Apr 17 [Epub ahead of print]:.

    Google Scholar 

  12. Lamb DJ, Weigel NL, Marcelli M (2001) Androgen receptors and their biology. Vitam Horm 62:199–230.

    Article  PubMed  CAS  Google Scholar 

  13. Holzbeierlein J, Lal P, LaTulippe E, et al. (2004) Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 164:217–227.

    PubMed  CAS  Google Scholar 

  14. Balk SP (2002) Androgen receptor as a target in androgen-independent prostate cancer. Urology 60:132–139.

    Article  PubMed  Google Scholar 

  15. Li R, Wheeler T, Dai H, et al. (2004) High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate cancer patients treated with radical prostatectomy. Am J Surg Pathol 28:928–934.

    Article  PubMed  Google Scholar 

  16. Agoulnik IU, Vaid A, Bingman IWE, et al. (2005) Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 65:7959–7967.

    PubMed  CAS  Google Scholar 

  17. Zegarra-Moro OL, Schmidt LJ, Huang H, et al. (2002) Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 62:1008–1013.

    PubMed  CAS  Google Scholar 

  18. Culig Z, Hobisch A, Cronauer MV, et al. (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54:5474–5478.

    PubMed  CAS  Google Scholar 

  19. Nazareth LV, Weigel NL (1996) Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 271:19900–19907.

    Article  PubMed  CAS  Google Scholar 

  20. Hobisch A, Eder IE, Putz T, et al. (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58:4640–4645.

    PubMed  CAS  Google Scholar 

  21. Titus MA, Schell MJ, Lih FB, et al. (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657.

    Article  PubMed  CAS  Google Scholar 

  22. Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200.

    Article  PubMed  CAS  Google Scholar 

  23. Yeh S-H, Miyamoto H, Shima H, et al. (1998) From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci USA 95:5527–5532.

    Article  PubMed  CAS  Google Scholar 

  24. Gregory CW, He B, Johnson RT, et al. (2001) A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61:4315–4319.

    PubMed  CAS  Google Scholar 

  25. McKenna NJ, Xu J, Nawaz Z, et al. (1999) Nuclear receptor coactivators: multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Mol Biol 69:3–12.

    Article  PubMed  CAS  Google Scholar 

  26. Xu J, Qiu Y, DeMayo FJ, et al. (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925.

    Article  PubMed  CAS  Google Scholar 

  27. Agoulnik IU, Vaid A, Nakka M, et al. (2006) Androgens modulate expression of TIF2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66:10594–602.

    Article  PubMed  CAS  Google Scholar 

  28. Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19:631–642.

    Article  PubMed  CAS  Google Scholar 

  29. Gregory CW, Fei X, Ponguta LA, et al. (2004) Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 279:7119–7130.

    Article  PubMed  CAS  Google Scholar 

  30. Zou JX, Zhong Z, Shi XB, et al. (2006) ACTR/AIB1/SRC-3 and androgen receptor control prostate cancer cell proliferation and tumor growth through direct control of cell cycle genes. Prostate [Epub ahead of print]:.

    Google Scholar 

  31. Zhou G, Hashimoto Y, Kwak I, et al. (2003) Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol 23:7742–7755.

    Article  PubMed  CAS  Google Scholar 

  32. Zhou HJ, Yan J, Luo W, et al. (2005) SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res 65:7976–7983.

    PubMed  CAS  Google Scholar 

  33. Majumder S, Liu Y, Ford OH, et al. (2006) Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66:1292–1301.

    Article  PubMed  CAS  Google Scholar 

  34. Link KA, Burd CJ, Williams E, et al. (2005) BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol Cell Biol 25:2200–2215.

    Article  PubMed  CAS  Google Scholar 

  35. Miyamoto H, Rahman M, Takatera H, et al. (2002) A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth. J Biol Chem 277:4609–4617.

    Article  PubMed  CAS  Google Scholar 

  36. Rahman MM, Miyamoto H, Lardy H, et al. (2003) Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cells. Proc Natl Acad Sci USA 100:5124–5129.

    Article  PubMed  CAS  Google Scholar 

  37. Rahman MM, Miyamoto H, Takatera H, et al. (2003) Reducing the agonist activity of antiandrogens by a dominant-negative androgen receptor coregulator ARA70 in prostate cancer cells. J Biol Chem 278:19619–19626.

    Article  PubMed  CAS  Google Scholar 

  38. Wang L, Hsu CL, Chang C (2005) Androgen receptor corepressors: an overview. Prostate 63:117–130.

    Article  PubMed  CAS  Google Scholar 

  39. Agoulnik IU, Krause WC, Bingman WEI, et al. (2003) Repressors of androgen and progesterone receptor action. J Biol Chem 278:31136–31148.

    Article  PubMed  CAS  Google Scholar 

  40. Burd CJ, Petre CE, Morey LM, et al. (2006) Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci USA 103:2190–2195.

    Article  PubMed  CAS  Google Scholar 

  41. Burd CJ, Petre CE, Moghadam H, et al. (2005) Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol Endocrinol 19:607–620.

    Article  PubMed  CAS  Google Scholar 

  42. Martinez ED, Danielsen M (2002) Loss of androgen receptor transcriptional activity at the G(1)/S transition. J Biol Chem 277:29719–29729.

    Article  PubMed  CAS  Google Scholar 

  43. Karvonen U, Janne OA, Palvimo JJ (2006) Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res [Epub ahead of print]:.

    Google Scholar 

  44. Chen G, Nomura M, Morinago H, et al. (2005) Modulation of androgen receptor transactivation by FoxH1. A newly identified androgen receptor corepressor. J Biol Chem 280:36355–36363.

    Article  PubMed  CAS  Google Scholar 

  45. Belandia B, Powell SM, Garcia-Pedrero JM, et al. (2005) Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 25:1425–1436.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Agoulnik, I.U., Weigel, N.L. (2008). Androgen Receptor Coactivators and Prostate Cancer. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_23

Download citation

Publish with us

Policies and ethics