Skip to main content
Log in

Bone mineral density of the spine and femur in healthy Saudis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The reference values of bone mineral density (BMD) were determined in healthy Saudis of both sexes and compared with US / northern European and other reference data. BMD was determined by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femur including subregions: trochanter, Ward’s triangle, and neck, in 1,980 randomly selected Saudis (age range 20–79 years; 915 males and 1,065 females) living in the Jeddah area. Age-related changes in BMD were similar to those described in US / northern European and Lebanese reference data. Decreases in BMD of males were evident (% per year): 0.3–0.8 (lumbar spine), 0.2–0.4 (femoral trochanter), 0.2–1.4 (Ward’s triangle), and 0.2–0.7 (femoral neck). Also, decreases in BMD of females were observed (% per year): 0.8–0.9 (lumbar spine), 0.7–0.9 (Ward’s triangle), and 0.3–0.7 (femoral neck). Using stepwise multiple regressions that included both body weight and height, the former had 2–4 times greater effect on BMD than the latter. Using the mean BMD of the <35-year-old group the T-score values were calculated for Saudis. The prevalence of osteoporosis in Saudis (50–79 years) at the lumbar spine using the manufacturer’s vs Saudi reference data was 38.3–47.7% vs 30.5–49.6 (P<0.000), respectively. Similarly, based on BMD of total femur, the prevalence of osteoporosis using the manufacturer’s vs Saudi reference data was 6.3–7.8% vs 1.2–4.7% (P<0.000), respectively. Saudis (≥50 years) in the lowest quartile of body weight exhibited higher prevalence of osteoporosis (25.6% in females and 15.5% in males) as compared to that of the highest quartiles (0.0% in females and 0.8% in males). The present study underscores the importance of using population-specific reference values for BMD measurements to avoid overdiagnosis and/or underdiagnosis of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Faulkner KG (2001) Clinical use of bone densitometry. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, Vol. 2. Academic Press, London pp 433–458

  2. Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288:1889–1897

    Article  PubMed  Google Scholar 

  3. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical Support Series, No. 843. WHO, Geneva

  4. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  5. Ahmed AIH, Blake GM, Rymer JM, Fogelman I (1997) Screening for osteopenia and osteoporosis: do the accepted normal ranges lead to overdiagnosis? Osteoporos Int 7:432–438

    Article  CAS  PubMed  Google Scholar 

  6. Petley GW, Cotton AM, Murrills AJ, Taylor PA, Cooper C, Cawley MI, Wilkin TJ (1996) Reference ranges of bone mineral density for women in Southern England: the impact of local data on the diagnosis of osteoporosis. Br J Radiol 69:655–660

    CAS  PubMed  Google Scholar 

  7. Chen Z, Maricic M, Lund P, Tesser J, Gluck O (1998) How the new Hologic hip normal reference values affect the densitometric diagnosis of osteoporosis. Osteoporos Int 8:423–427

    CAS  PubMed  Google Scholar 

  8. Simmons A, Barrington S, O’ Doherty M, Coakley AJ (1995) Dual energy X-ray absorptiometry normal reference range use within the UK and the effect of different normal ranges on the assessment of bone densitometry. Br J Radiol 68:903–909

    CAS  PubMed  Google Scholar 

  9. Lunt M, Felsenberg D, Reeve J (1997) Bone densitometry variation and its effects on risk of vertebral deformity in men and women studied in thirteen European centers: the EVOS Study. J Bone Miner Res 12:1993–1994

    PubMed  Google Scholar 

  10. Laskey M, Crisp A, Cole T, Compston JE (1992) Comparison of the effect of different reference data on Luna DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers. Br J Radiol 65:1124–1129

    CAS  PubMed  Google Scholar 

  11. Mazess RB, Barden H (1999) Bone densitometry of the spine and femure in adult white females. Calcif Tissue Int 65:91–99

    Article  CAS  PubMed  Google Scholar 

  12. Looker AC, Owoll ES, Johnston CC, Lindsay RL, Wahner HW, Calvo MS, Harris TB, Heyse SP (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12:1761–1768

    CAS  PubMed  Google Scholar 

  13. Russell-Aulet M, Wang J, Thornton JCH-K, Colt EWD, Pierson RN Jr (1991) Bone mineral density and mass by total body dual-photon absorptiometry in normal white and Asian men. J Bone Miner Res 6:1109–1113

    CAS  PubMed  Google Scholar 

  14. Russell-Aulet M, Wang J, Thornton JCH-K, Colt EWD, Pierson RN Jr (1991) Bone mineral density and mass in a cross-sectional study of white and Asian women. J Bone Miner Res 8:575–582

    Google Scholar 

  15. Gurlek A, Bayraktar M, Ariyurek M (2000) Inappropriate reference range for peak bone mineral density in dual-energy X-ray absorptiometry. Implications for the interpretation of T-scores. Osteoporos Int 11:809–813

    PubMed  Google Scholar 

  16. Tenenhouse A, Joseph L, Kreiger N, Polinquin S, Murray TM, Blondeau L (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multi-center Osteoporosis Study (CaMos). Osteoporos Int 11:897–904

    CAS  PubMed  Google Scholar 

  17. Diaz Curiel M, Carrasco de la Pena JL, Honorato Perez J, Perez Cano R, Rapado A, Ruiz Martinez I (1997) Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Osteoporos Int 7:59–64

    PubMed  Google Scholar 

  18. Consensus Development Statement (1997) Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int 7:1–6

    Google Scholar 

  19. Ray NF, Chan JK, Thamer M, Melton LJ III (1997) Medical expenditures for the treatment of osteoporosis fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35

    CAS  PubMed  Google Scholar 

  20. El-Desouki M (1995) Bone mineral density of the spine and femur in the normal Saudi population. Saudi Med J 16:30–35

    Google Scholar 

  21. Ministry of Planning (2001) Ministry of planning government report. Ministry of Planning, Riyadh, Saudi Arabia

  22. Ardawi MSM, Nasrat HA, BA’Aqueel HS, Ghafoury HM, Bahnassy AA (1995) Vitamin D status and calcium-regulating hormones in Saudis: a prospective study. Saudi Med J 16:402–409

    Google Scholar 

  23. Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL (1996) Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Metab Disord 20:1027–1032

    CAS  Google Scholar 

  24. Chen Z, Lohman TG, Stini WA, Ritenbough C, Aickin M (1997) Fat or lean tissue mass: which one is the major determinant of bone mineral density in healthy postmenopausal women? J Bone Miner Res 12:144–151

    Google Scholar 

  25. Khosla S, AtKinson EJ, Riggs BL, Melton LJ III (1996) Relationship between body composition and bone mass in women. J Bone Miner Res 11:857–863

    CAS  PubMed  Google Scholar 

  26. Michaelsson K, Bergstrom R, Mallmin H, Holmberg L, Wolka, Ljunghall S (1996) Screening for osteopenia and osteoporosis: selection by body composition. Osteoporos Int 6:120–126

    PubMed  Google Scholar 

  27. Mazess RB, Barden HS, Drinka PJ, Bauwens SF, Orwoll ESD, Bell NH (1990) Influence of age and body weight on spine and femur bone mineral density in US white men. J Bone Miner Res 6:645–652

    Google Scholar 

  28. Karlsson MK, Gardsell P, Johnnell O, Nilsson BE, Akesson K, Obrant KJ (1993) Bone mineral normative data in Malmo, Sweden: comparison with reference hip data and hip fracture incidence in other ethnic groups. Acta Orthop Scand 64:168–172

    CAS  PubMed  Google Scholar 

  29. Kroger H, Heikkinen J, Laitinin K, Kotaniemi A (1992) Dual-energy X-ray absorptiometry in normal women: a cross-sectional study of 717 Finnish volunteers. Osteoporos Int 2:135–140

    PubMed  Google Scholar 

  30. Laitinen K, Valmaki M, Keto P (1991) Bone mineral density measured by dual energy X-ray absorptiometry in healthy Finnish women. Calcif Tissue Int 48:224–231

    Google Scholar 

  31. Lilley J, Eyre S, Walters B, Heath DA, Maountford PJ (1994) An investigation of spinal bone mineral density measured laterally: a normal range for UK women. Br J Radiol 67:157–161

    CAS  PubMed  Google Scholar 

  32. Truscott JG, Simpson D, Fordham JN (1996) Compilation of national bone densitometry reference data. In: Ring EFS, Elvins DM, Ghalla AK (eds) Current research in osteoporosis and bone mineral measurement, IV: 1996. British Institute of Radiology, London, pp 77–78

  33. Kroger H, Laitinen K (1992) Bone mineral density measured by dual-energy X-ray absorptiometry in normal men. Eur J Clin Nutr 22:454–460

    CAS  Google Scholar 

  34. Wetzel R, Pfandl S, Bodenburge R, Puhl W (1996) Bone mineral density—reference values of healthy German females—examinations of the lumbar spine using LUNAR DPX. Osteologie 5:71–81

    Google Scholar 

  35. Burger H, van Daele PLA, Algra D, van den Onweland FA, Grobbee DE, Hofman A, van Kujik C, Schutte HE, Birkenhager JC, Pols HAP (1994) The association between age and bone mineral density in men and women aged 55 years and over: the Rotterdam Study. J Bone Miner Res 25:1-13

    CAS  Google Scholar 

  36. Maalouf G, Salem S, Sandid M, Attallah P, Eid J, Saliba N, Nehme I, Johnell O (2000) Bone mineral density of the Lebanese reference population. Osteoporos Int 11:765–769

    Article  PubMed  Google Scholar 

  37. Gougherty G, Al-Marzouk N (2001) Bone density measured by dual-energy x-ray absorptiometry in healthy Kuwaiti women. Calcif Tissue Int 68:225–229

    CAS  PubMed  Google Scholar 

  38. Iki M, Kagamimori S, Kagawa Y, Matzuki T, Yoneshima H, Marumo F (2001) Bone mineral density of the spine, hip and distal forearm in representative samples of the Japanese population-based osteoporosis: JPOS. Osteoporos Int 12:529–536

    CAS  PubMed  Google Scholar 

  39. Liao E-Y, Wu X-P, Deng X-G, Huang G, Zhu X-P, Long Z-F, Wang W-B, Tang W-L, Zhang H (2002) Age-related bone mineral density, accumulated bone loss rate and prevalence of osteoporosis at multiple skeletal sites in Chinese women. Osteoporos Int 13:669–676

    Article  Google Scholar 

  40. Kudlacek S, Schneider B, Peterlik M, Leb G, Klaushofer K, Weber K, Woloszczuk W, Willvonseder R (2003) Normative data of bone mineral density in an unselected adult Austrian population. Eur J Clin Invest 33:332–339

    CAS  PubMed  Google Scholar 

  41. Greenspan SL, Maitland LA, Myers ER, Krasnow MB, Kido T (1994) Femoral bone loss progresses with age: a longitudinal study in women over age 65. J Bone Miner Res 9:1959–1965

    CAS  PubMed  Google Scholar 

  42. Ensurd KE, Palermo L, Black DM, Cauley J, Jergas M, Orwell ES, Fox KM, Cummings SR (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res 10:1778–1787

    CAS  PubMed  Google Scholar 

  43. Jones G, Nguyen TV, Sambrook P, Kelly PJ, Eisman JA (1994) Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ 309:691–695

    CAS  PubMed  Google Scholar 

  44. Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN (1996) Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol 144:255–263

    CAS  PubMed  Google Scholar 

  45. Burger H, de Laet CE, van Daele PL, West AF, Witteman JC, Pols HA (1998) Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J Epidemiol 147:871–879

    CAS  PubMed  Google Scholar 

  46. Paiva LC, Filardi S, Pinto-Neto A-M, Samara A, Neto JFM (2000) Impact of degenerative radiographic abnormalities and vertebral fractures on spinal bone density of women with osteoporosis. Sao Paulo Med J 120:9–12

    Google Scholar 

  47. Lentle BC, Prior JC (2003) Osteoporosis: what a clinician expects to learn from a patient’s bone density examination. Radiology 228:620–628

    PubMed  Google Scholar 

  48. Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70:1202–1207

    CAS  PubMed  Google Scholar 

  49. Jaovisidha S, Sartoris DJ, Martin EM, De Maeseneer M, Szollar SM, Deftos LJ (1997) Influence of spondylopathy on bone densitometry using dual energy x-ray absorptiometry. Calcif Tissue Int 60:424–429

    Google Scholar 

  50. Rand T, Seidl G, Kainberger F (1997) Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy x-ray absorptiometry (DXA). Calcif Tissue Int 60:430–433

    Google Scholar 

  51. Ryan PJ, Evans P, Blake GM, Fogelman I (1992) The effect of vertebral collapse on spinal bone mineral density. Bone Miner 18:267–272

    Article  PubMed  Google Scholar 

  52. Faulkner KG, Von Stetten E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2:343–350

    CAS  PubMed  Google Scholar 

  53. Hyakutake S, Goto S, Yamagata M, Moriya H (1994) Relationship between bone mineral density of the proximal femur and lumbar spine and quadriceps and hamstrings torque in healthy Japanese subjects. Calcif Tissue Int 55:223–229

    Google Scholar 

  54. Bell NH, Gordon L, Stevens J, Shary JR (1995) Demonstration that bone mineral density of the lumbar spine, trochanter, and femoral neck is higher in black than in white young men. Calcif Tissue Int 56:11–13

    Google Scholar 

  55. Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham Study. J Bone Miner Res 8:567–573

    CAS  PubMed  Google Scholar 

  56. Pruzansky ME, Turano M, Luckey M, Senie R (1989) Low body weight as a risk factor for hip fracture in both black and white women. J Orthop Res 7:192–197

    CAS  PubMed  Google Scholar 

  57. Fujiwara S, Kasagi F, Yamada M, Kodama K (1997) Risk factors for hip fracture in a Japanese cohort. J Bone Miner Res 12:998–1004

    Google Scholar 

  58. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporosis Fractures Research Group. N Engl J Med 332:767–773

    CAS  PubMed  Google Scholar 

  59. Joakimsen RM, Fonnebo V, Magnus JH, Tollan A, Sogaad AJ (1998) The Tromso Study: body weight, body mass index and fractures. Osteoporos Int 8:436–442

    Article  CAS  PubMed  Google Scholar 

  60. Meyer HE, Tverdal A, Falch JA (1995) Body weight, body mass index, and fatal hip fractures: 16 years’ follow-up of 674,000 Norwegian woman and men. Epidemiology 6:299–305

    CAS  PubMed  Google Scholar 

  61. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  62. Reid IR, Ames R, Evans MC (1992) Determinants of total body regional bone mineral density in normal postmenopausal women: a key role for fat mass. J Clin Endocrinol Metab 75:45–51

    CAS  PubMed  Google Scholar 

  63. Bolotin HH (1998) A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J Bone Miner Res 13:1739–1746

    CAS  PubMed  Google Scholar 

  64. Tothill P, Pye DW (1992) Error due to non-uniform distribution of fat in dual-energy X-ray absorptiometry of the lumbar spine. Br J Radiol 65:807–813

    CAS  PubMed  Google Scholar 

  65. Mazess RB, Barden HS (1990) Inter-relationships among bone densitometry sites in normal young women. Bone Miner 11:347–356

    Article  CAS  PubMed  Google Scholar 

  66. Harris S, Dallal GE, Dawson-Hughes B (1992) Influence of body weight on rates of change in bone density of the spine, hip, and radius in postmenopausal women. Calcif Tissue Int 50:19–23

    CAS  PubMed  Google Scholar 

  67. Epstein S, Miller P (1997) Bone mass measurements: the case for selected screening? Trends Endocrinol Metab 8:157–160

    Google Scholar 

  68. Ensrud KE, Lipschutz RC, Cauley JA, Seeley D, Nevitt MC, Scott J, Orwoll ES, Grant HK, Cummings SR (1997) Body size and hip fracture risk in older women: a prospective study. Am J Med 103:274–280

    Article  CAS  PubMed  Google Scholar 

  69. Looker AC, Johnston CC Jr, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Lindsay RL (1995) Prevalence of low femoral bone density in older US women from HNANES III. J Bone Miner Res 10:796–802

    CAS  PubMed  Google Scholar 

  70. Greenspan SL, Bouxsein ML, Melton ME, Kolodny AH, Clair JH, Delucca PT, Stex M Jr, Faulkner KG, Orwoll ES (1997) Precision and discriminating ability of calcaneal bone measurement technologies. J Bone Miner Res 12:1303–1313

    CAS  PubMed  Google Scholar 

  71. Melton LJ III (1997) The prevalence of osteoporosis. J Bone Miner Res 12:1769–1771

    CAS  PubMed  Google Scholar 

  72. Smeets-Goevaers CG, Lesusink GL, Papapoules SE, Martens LW, Keyser JJ, Weerdenburg JP, Beijers LM, Zwinderman AH, Knottnerus JA, Pols HA, Pop VJ (1998) The prevalence of low bone mineral density in Dutch perimenopausal women: the Eindhoven Perimenopausal Osteoporosis Study. Osteoporos Int 8:404–409

    PubMed  Google Scholar 

  73. Ryan PJ, Spector TP, Blake GM, Doyle DV, Fogelman I (1993) A comparison of reference bone mineral density measurements derived from two sources: referenced and population based. Br J Radiol 6:1138–1141

    Google Scholar 

  74. Shipman AJ, Guy WG, Smith I, Ostlene S, Greer W, Smith R (1999) Vertebral bone mineral density, content and average in 8,789 normal woman aged 33–73 years who have never had hormone replacement therapy. Osteoporos Int 9:420–426

    Article  CAS  PubMed  Google Scholar 

  75. Lehmann R, Wapniarz M, Randerath D, Kvasnicka HM, John W, Reincke M, Kutnar S, Klein K, Allolio B (1995) Dual energy X-ray absorptiometry at the lumbar spine in German men and women: a cross-sectional study. Calcif Tissue Int 56:350–354

    Google Scholar 

  76. Ariot ME, Somay-Rendu E, Gamero P, Vey-Martry B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12:683–690

    Google Scholar 

  77. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  CAS  PubMed  Google Scholar 

  78. Pocock NA, Eisman JA, Mazess RB, Sambrook PN, Yeates MG, Freund J (1988) Bone mineral density in Australia compared with the United Sates. J Bone Miner Res 3:601–604

    CAS  PubMed  Google Scholar 

  79. Kelly PJ, Twomey L, Sambrook PN, Eisman JA (1990) Sex differences in peak adult bone mineral density. J Bone Miner Res 5:1169–1175

    CAS  PubMed  Google Scholar 

  80. Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C, Falch JA, Masaryk P, Pols HA, Poor G, Reid DM, Scheidt-Nave C, Weber K, Varlow J, Kanis JA, O’Neill TW, Silman AJ (1997) Population based on georgraphic variations in DXA bone density in Europe: the EVOS Study. Osteoporos Int 7:175–189

    CAS  PubMed  Google Scholar 

  81. Molyvda-Athanasopoulou E, Sioundas A, Hatziioannou K (2000) Dual energy X-ray absorptiometry reference data for Greek population: the impact on diagnosis of using various normal ranges for comparison. Eur J Radiol 36:36–40

    Article  CAS  PubMed  Google Scholar 

  82. Pearson J, Dequaker J, Reeve J, Felsenberg D, Henley M, Bright J, Lunt M, Adams J, Diaz Curiel M, Galan F (1995) Dual X-ray absorptiometry of the proximal femur: normal European values standardized with the European spine phantom. J Bone Miner Res 10:315–324

    CAS  PubMed  Google Scholar 

  83. Campion JM, Maricic MJ. Osteoporosis in men. Am Fam Physician, 2003; 67:1521–1526

  84. Kudlacek S, Schneider B, Resch H, Freudenthaler O, Willvonseder R (2000) Gender differences in fracture risk and bone mineral density. Maturitas 36:173–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to King Abdulaziz University for financial support to Professor M.S.M Ardawi (Grants no. 652/420 and MB/137/1424 Saudi Osteoporosis Research Group) at the Department of Clinical Biochemistry, Faculty of Medicine, and the Clinical Endocrine and Metabolic Research Laboratory at King Fahd Medical Research Centre (KFMRC), Jeddah, Saudi Arabia. We thank all the subjects who participated in this project, and we thank all the staff and colleagues at King Abdulaziz University Hospital, New Jeddah Clinic Hospital (NJCH), and the Primary Care Health Centers for their invaluable assistance during the execution of this project. Special thanks are due to Ms Vicky Medina for her excellent secretarial help. Special thanks also to Dr Hamed Mutabagani for allowing us to use the facilities of NJCH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salleh M. Ardawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardawi, M.S.M., Maimany, A.A., Bahksh, T.M. et al. Bone mineral density of the spine and femur in healthy Saudis. Osteoporos Int 16, 43–55 (2005). https://doi.org/10.1007/s00198-004-1639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1639-9

Keywords

Navigation