Skip to main content
Log in

CT-based manual segmentation and evaluation of paranasal sinuses

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Manual segmentation of computed tomography (CT) datasets was performed for robot-assisted endoscope movement during functional endoscopic sinus surgery (FESS). Segmented 3D models are needed for the robots’ workspace definition. A total of 50 preselected CT datasets were each segmented in 150–200 coronal slices with 24 landmarks being set. Three different colors for segmentation represent diverse risk areas. Extension and volumetric measurements were performed. Three-dimensional reconstruction was generated after segmentation. Manual segmentation took 8–10 h for each CT dataset. The mean volumes were: right maxillary sinus 17.4 cm³, left side 17.9 cm³, right frontal sinus 4.2 cm³, left side 4.0 cm³, total frontal sinuses 7.9 cm³, sphenoid sinus right side 5.3 cm³, left side 5.5 cm³, total sphenoid sinus volume 11.2 cm³. Our manually segmented 3D-models present the patient’s individual anatomy with a special focus on structures in danger according to the diverse colored risk areas. For safe robot assistance, the high-accuracy models represent an average of the population for anatomical variations, extension and volumetric measurements. They can be used as a database for automatic model-based segmentation. None of the segmentation methods so far described provide risk segmentation. The robot’s maximum distance to the segmented border can be adjusted according to the differently colored areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Strauss G, Fischer M, Meixensberger J, Falk V, Trantakis C, Winkler D et al (2005) Bestimmung der Effizienz von intraoperativer Technologie: Workflow-Analyse am Beispiel der endoskopischen Nasennebenhöhlenchirurgie. HNO 54:528–535. doi:10.1007/s000106-005-1345-8

    Article  Google Scholar 

  2. Stammberger GH, Posawetz W (1990) Functional endoscopic sinus sugery. Concept, indications and results of the Messerklinger technique. Eur Arch Otorhinolaryngol 247:63–76. doi:10.1007/BF00183169

    Article  PubMed  CAS  Google Scholar 

  3. Kennedy DW (2000) Functional endoscopic sinus surgery: concepts, surgical indications, and instrumentation. In: Kennedy DW, Zinreich J (eds) Diseases of the sinuses. Diagnoses and endoscopic management. Elsevier, Oxford, pp 197–210

    Google Scholar 

  4. Pérez-Piñas I, Sabaté J, Carmona A, Catalina-Herrera CJ, Jiménez-Castellanos J (2000) Anatomical variations in the human paranasal sinus region studied by CT. J Anat 197:221–227. doi:10.1017/S0021878299006500

    Article  PubMed  Google Scholar 

  5. Stallman JS, Lobo JN, Som PM (2004) The incidence of concha bullosa and its relationship to nasal septal deviation and paranasal sinus disease. AJNR Am J Neuroradiol 25:1613–1618

    PubMed  Google Scholar 

  6. Oeken J, Bootz F (2004) Schwere Komplikationen nach endonasalen Nasennebenhöhlenoperationen. HNO 52:549–553. doi:10.1007/s00106-003-0861-7

    Article  PubMed  CAS  Google Scholar 

  7. Strauss G, Hofer M, Grunert R, Korb W, Trantakis C, Winkler D et al (2007) Ein Konzept für eine automatisierte Endoskopführung für die Nasennebenhöhlenchirurgie. HNO 55:177–184. doi:10.1007/s00106-006-1434-3

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita J, Yamauchi Y, Mochimaru M, Fukui Y, Yokoyama K (1999) Real-time 3-D model- based navigation system for endoscopic paranasal sinus surgery. IEEE Trans Biomed Eng 46(1):107–116. doi:10.1109/10.736765

    Article  PubMed  CAS  Google Scholar 

  9. Kawarai Y, Fukushima K, Ogawa T, Nishizaki K, Gunduz M, Fujimoto M et al (1999) Volume quantification of healthy paranasal cavity by three-dimensional CT imaging. Acta Otolaryngol Stockh 540:45–49. doi:10.1016/00016489950181198

    Article  CAS  Google Scholar 

  10. Salah Z, Bartz D, Dammann F, Schwaderer E, Maassen M, Strasser W (2005) A fast and accurate approach for the segmentation of the paranasal sinus. Bildverarbeitung für die Medizin 2005. Informatik aktuel, Springer, pp 93–97. doi:10.1007/3-540-26431-0-20

  11. Bolger WE, Butzin CA, Parsons DS (1991) Paranasal sinus bony anatomic variations and mucosal abnormalities: CT analysis for endoscopic sinus surgery. Laryngoscope 101:56–64. doi:10.1288/00005537-199101000-00010

    Article  PubMed  CAS  Google Scholar 

  12. Kantarci M, Karasen RM, Alper F, Onbas O, Okur A, Karaman A (2004) Remarkable anatomic variations in paranasal sinus region and their clinical importance. Eur J Radiol 50(3):296–302. doi:10.1016/j.ejrad.2003.08.012

    Article  PubMed  Google Scholar 

  13. Hiramatsu H, Tokashiki R, Suzuki M (2008) Usefulness of three-dimensional computed tomography of the larynx for evaluation of unilateral vocal fold paralysis before and after treatment: technique and clinical applications. Eur Arch Otorhinolaryngol 265:725–730. doi:10.1007/s00405-007-0514-7

    Article  PubMed  Google Scholar 

  14. Wagner I, Tingelhoff K, Westphal R, Kunkel ME, Wahl F, Bootz F, et al (2008) Ex vivo evaluation of force data and tissue elasticity for robot-assisted FESS. Eur Arch Otorhinolaryngol. doi:10.1007/s00405-008-0644-6

  15. Koulechov K, Strauss G, Dietz A, Strauss M, Hofer M, Lueth TC (2006) FESS control: realization of navigated control for functional endoscopic sinus surgery. Comput Aided Surg 11(3):147–159. doi:10.1080/10929080600750789

    Article  PubMed  Google Scholar 

  16. Gill JD, Ladak HM, Steinman DA, Fenster A (2000) Accuracy and variability of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med Phys 27(6):1333–1342. doi:10.111811.599014

    Article  PubMed  CAS  Google Scholar 

  17. Asthon EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S (2003) Accuracy and reproducibility of manual and semiautomated quantification of MS Lesions by MRI. J Magn Reson Imaging 17:300–308. doi:10.1002/jmri.10258

    Article  Google Scholar 

  18. Apelt D, Preim B, Hahn HK, Strauss G (2004) Bildanalyse und Visualisierung für die Planung von Nasennebenhöhlen-Operationen. Bildverarbeitung für die Medizin. Informatik aktuell. Springer, Berlin, pp 194–198

    Google Scholar 

  19. Tingelhoff K, Moral AI, Kunkel ME, Rilk M, Wagner I, Eichhorn KWG et al (2007) Comparison between manual and semi-automatic segmentation of nasal cavity and paranasal sinuses from CT-images. Conf Proc IEEE Eng Med Biol Soc 1:5505–5508. doi:10.1109/IEMBS.2007.4353592

    Google Scholar 

  20. Tingelhoff K, Eichhorn KWG, Wagner I, Kunkel ME, Moral AI, Wahl FM, et al (2008) Analysis of manual segmentation in paranasal CT images. Eur Arch Otorhinolaryngol. doi:10.1007/s00405-008-0594-z

  21. Lam WWM, Liang EY, Woo JKS, Van Hasselt A, Metreweli C (1996) The etiological role of concha bullosa in chronic sinusitis. Eur Radiol 6(4):550–552. doi:10.1007/BF00182491

    Article  PubMed  CAS  Google Scholar 

  22. Ariji Y, Ariji E, Yoshiura K, Kanda S (1996) Computed tomographic indices for maxillary sinus size in comparison with sinus volume. Dentomaxillofac Radiol 25(1):19–24. doi:10.1038/sj.dmfr.4600235

    PubMed  CAS  Google Scholar 

  23. Barghouth G, Prior JO, Lepori D, Duvoisin B, Schnyder P, Gudinchet F (2002) Paranasal sinuses in children: size evaluation of maxillary, sphenoid, and frontal sinuses by magnetic resonance imaging and proposal of volume index percentile curves. Eur Radiol 12(6):1451–1458. doi:10.1007/s00330-001-1218-9

    Article  PubMed  CAS  Google Scholar 

  24. Spaeth J, Krügelstein U, Schlöndorff G (1997) The paranasal sinuses in CT-imaging: development from birth to age 25. Int J Pediatr Otorhinolaryngol 39:25–40. doi:10.1016/S0165-5876(96)01458-9

    Article  PubMed  CAS  Google Scholar 

  25. Uchida Y, Goto M, Katsuki T, Akiyoshi T (1998) A cadaveric study of maxillary sinus size as an aid in bone grafting of the maxillary sinus floor. J Oral Maxillofac Surg 56:1158–1163

    Article  PubMed  CAS  Google Scholar 

  26. Schumacher GH, Heyne HJ, Fanghänel R (1972) Anatomy of the human paranasal sinuses. 2. Volumetric measurement. Anat Anz 130(1):143–157

    PubMed  CAS  Google Scholar 

  27. Anagnostopoulou S, Venieratos D, Spyropoulos N (1991) Classification of human maxillar sinuses according to their geometric features. Anat Anz 173(3):121–130

    PubMed  CAS  Google Scholar 

  28. Karakas S, Kavakli A (2005) Morphometric examination of the paranasal sinuses and mastoid air cells using computed tomography. Ann Saudi Med 25(1):41–45

    PubMed  Google Scholar 

  29. Emirzeoglu M, Sahin B, Bilgic S, Celebi M, Uzun A (2007) Volumetric evaluation of the paranasal sinuses in normal subjects using computer tomography images: a stereological study. Auris Nasus Larynx 34:191–195. doi:10.106/j.anl.2006.09.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is part of the project “Robot-assisted intuitive endoscope navigation in endonasal surgeries with the help of preoperative computed tomography (CT) or magnetic resonance imaging (MRI) analysis” and we are grateful to the Deutsche Forschungsgemeinschaft (DFG) for funding this project. Bonfor, a research trust of the University of Bonn, is funding this project as well. The authors wish to express their thanks to Prof. Dr. K. Schild and Priv.-Doz. Dr. med. Wilhelm of the Radiology Clinic of the University of Bonn for providing CT image data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus W. G. Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirner, S., Tingelhoff, K., Wagner, I. et al. CT-based manual segmentation and evaluation of paranasal sinuses. Eur Arch Otorhinolaryngol 266, 507–518 (2009). https://doi.org/10.1007/s00405-008-0777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-008-0777-7

Keywords

Navigation