Skip to main content
Log in

Kidney NGAL is a novel early marker of acute injury following transplantation

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury secondary to ischemia–reperfusion in renal allografts often results in delayed graft function. We tested the hypothesis that expression of neutrophil gelatinase-associated lipocalin (NGAL) is an early marker of acute kidney injury following transplantation. Sections from paraffin-embedded protocol biopsy specimens obtained at approximately one hour of reperfusion after transplantation of 13 cadaveric (CAD) and 12 living-related (LRD) renal allografts were examined by immunohistochemistry for expression of NGAL. The staining intensity was correlated with cold ischemia time, peak post-operative serum creatinine, and dialysis requirement. There were no differences between the LRD and CAD groups in age, gender or preoperative serum creatinine. Using a scoring system of 0 (no staining) to 3 (most intense staining), NGAL expression was significantly increased in CAD specimens (2.3±0.8 versus 0.8±0.7 in LRD, p<0.001). There was a strong correlation between NGAL staining intensity and cold ischemia time (R=0.87, p<0.001). Importantly, NGAL staining in these early CAD biopsies was strongly correlated with peak postoperative serum creatinine, which occurred days later (R=0.86, p<0.001). Four patients developed delayed graft function requiring dialysis during the first week posttransplantation; all of these patients displayed the most intense NGAL staining in their first protocol biopsies. We conclude that NGAL staining intensity in early protocol biopsies represents a novel predictive biomarker of acute kidney injury following transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Star RA (1998) Treatment of acute renal failure. Kidney Int 54:1817–1831

    CAS  PubMed  Google Scholar 

  2. Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114:5–14

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lamiere N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430

    Google Scholar 

  4. Molitoris BA (2003) Transitioning to therapy in ischemic acute renal failure. J Am Soc Nephrol 14:265–267

    PubMed  Google Scholar 

  5. Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210

    PubMed  Google Scholar 

  6. Siegel NJ, Shah SV (2003) Acute renal failure: directions for the next decade. J Am Soc Nephrol 14:2176–2177

    PubMed  Google Scholar 

  7. Devarajan P (2005) Cellular and molecular derangements in acute tubular necrosis. Curr Opin Pediatr 17:193–199

    PubMed  Google Scholar 

  8. Schrier RW (2004) Need to intervene in established acute renal failure. J Am Soc Nephrol 15:2756–2758

    PubMed  Google Scholar 

  9. Hewitt SM, Dear J, Star RA (2004) Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 15:1677–1689

    PubMed  Google Scholar 

  10. Herget-Rosenthal S, Marggraf G, Hüsing J, Goring F, Pietruck F, Janssen O, Phillip T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122

    CAS  PubMed  Google Scholar 

  11. Rabb H (2003) Novel urinary markers for early diagnosis of ARF. Am J Kidney Dis 42:599–600

    CAS  PubMed  Google Scholar 

  12. Bellomo R, Kellum JA, Ronco C (2004) Defining acute renal failure: physiological principles. Intensive Care Med 30:33–37

    PubMed  Google Scholar 

  13. Perico N, Cattaneo D, Sayegh MH, Remuzzi G (2004) Delayed graft function in kidney transplantation. Lancet 364:1814–1827

    PubMed  Google Scholar 

  14. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL (1997) Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 63:968–974

    CAS  PubMed  Google Scholar 

  15. Koning OH, Ploeg RJ, van Bockel H, Groenewegen M, van der Woude FJ, Persijn GG, Hermans J (1997) Risk factors for delayed graft function in cadaveric kidney transplantation: a prospective study of renal function and graft survival after preservation with University of Wisconsin solution in multi-organ donors. Transplantation 63:1620–1628

    CAS  PubMed  Google Scholar 

  16. Jacobs SC, Cho E, Foster C, Liao P, Bartlett ST (2004) Laparoscopic donor nephrectomy: the University of Maryland 6-year experience. J Urol 171:47–51

    PubMed  Google Scholar 

  17. Lu CY, Penfield JG, Kielar ML, Vasquez MA, Jeyarajah DR (1999) Hypothesis: is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney Int 55:2157–2168

    CAS  PubMed  Google Scholar 

  18. Sayegh MH (1999) Why do we reject a graft? Role of indirect allorecognition in graft rejection. Kidney Int 65:1967–1979

    Google Scholar 

  19. Boom H, Mallat MJ, de Fijter JW, Zwinderman AH, Paul LC (2000) Delayed graft function influences renal function, but not survival. Kidney Int 58:859–866

    CAS  PubMed  Google Scholar 

  20. Giral-Classe M, Hourmant M, Cantarovich D, Dantal J, Blancho G, Daguin P, Ancelet D, Soulillou JP (1998) Delayed graft function of more than six days strongly decreases long-term survival of transplanted kidneys. Kidney Int 54:972–978

    CAS  PubMed  Google Scholar 

  21. Shoskes DA, Cecka M (1998) Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 66:1697–1701

    CAS  PubMed  Google Scholar 

  22. Troppman C, Gruessner AC, Gillingham KJ, Sutherland DE, Matas AJ, Gruessner RW (1999) Impact of delayed graft function on long-term graft survival after solid organ transplantation. Transplant Proc 31:1290–1292

    Google Scholar 

  23. Woo YM, Jardine AG, Clark AF, MacGregor MS, Bowman AW, Macpherson SG, Briggs JD, Junor BJ, McMillan MA, Rodger RS (1999) Early graft function and patient survival following cadaveric renal transplantation. Kidney Int 55:692–699

    CAS  PubMed  Google Scholar 

  24. Tejani AH, Sullivan EK, Alexander SR, Fine RN, Harmon WE, Kohaut EC (1999) Predictive factors for delayed graft function (DGF) and its impact on renal graft survival in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant 3:293–300

    CAS  PubMed  Google Scholar 

  25. Prommool S, Jhangri GS, Cockfield SM, Halloran PF (2000) Time dependency of factors affecting renal allograft survival. J Am Soc Nephrol 11:565–573

    CAS  PubMed  Google Scholar 

  26. Halloran PF, Hunsicker LG (2001) Delayed graft function: state of the art, Nov 10–11, 2000. Summit meeting, Scottsdale, Arizona, USA. Am J Transplant 1:115–120

    CAS  PubMed  Google Scholar 

  27. Salahudeen AK, Haider N, May W (2004) Cold ischemia and the reduced long-term survival of cadaveric renal allografts. Kidney Int 65:713–718

    PubMed  Google Scholar 

  28. Irish WD, McCollum DA, Tesi RJ, Owen AB, Brennan DC, Bailly JE, Schnitzler MA (2003) Nomogram for predicting the likelihood of delayed graft function in adult cadaveric renal transplant recipients. J Am Soc Nephrol 14:2967–2974

    PubMed  Google Scholar 

  29. Brier ME, Ray PC, Klein JB (2003) Prediction of delayed renal allograft function using an artificial neural network. Nephrol Dial Transplant 18:2655–2659

    PubMed  Google Scholar 

  30. Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P (2003) Differential gene expression following early renal ischemia–reperfusion. Kidney Int 63:1714–1724

    CAS  PubMed  Google Scholar 

  31. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of NGAL as a novel urinary biomarker for ischemic injury. J Am Soc Nephrol 4:2534–2543

    Google Scholar 

  32. Devarajan P, Mishra J, Supavekin S, Patterson LT, Potter SS (2003) Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery and novel therapeutics. Mol Genet Metab 80:365–376

    CAS  PubMed  Google Scholar 

  33. Oberbauer R, Rohrmoser M, Regele H, Mulhbacher F, Mayer G (1999) Apoptosis of tubular epithelial cells in donor kidney biopsies predicts early renal allograft function. J Am Soc Nephrol 10:2006–2013

    CAS  PubMed  Google Scholar 

  34. Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, Kaskel FJ, Tellis V, Devarajan P (2003) Activation of mitochondrial apoptotic pathways in human allografts after ischemia–reperfusion injury. Transplantation 76:50–54

    CAS  PubMed  Google Scholar 

  35. Schwarz C, Regele H, Steininger R, Hansmann C, Mayer G, Oberbauer R (2001) The contribution of adhesion molecule expression in donor kidney biopsies to early allograft dysfunction. Transplantation 71:1666–1670

    CAS  PubMed  Google Scholar 

  36. Yang J, Goetz D, Li J-Y, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10:1045–1056

    CAS  PubMed  Google Scholar 

  37. Gwira JA, Wei F, Ishibe S, Ueland JM, Barasch J, Cantley LG (2005) Expression of NGAL regulates epithelial morphogenesis in vitro. J Biol Chem 280:7875–7882

    CAS  PubMed  Google Scholar 

  38. Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by NGAL. J Am Soc Nephrol 15:3073–3082

    PubMed  Google Scholar 

  39. Mori K, Lee HT, Rapoport D, Drexler I, Foster K, Yang J, Schmidt-Ott, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia. J Clin Invest 115:610–621

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Salmela K, Wramner L, Ekberg H, Hauser I, Bentdal O, Lins LE, Isoniemi H, Backman L, Persson N, Neumayer HH, Jorgensen PF, Spieker C, Hendry B, Nicholls A, Kirste G, Hasche G (1999) A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimobab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European Anti-ICAM-1 Renal Transplant Study Group. Transplantation 67:729–736

    CAS  PubMed  Google Scholar 

  41. Acker CG, Flick R, Shapiro R, Shapiro R, Scantlebury VP, Jordan ML, Vivas C, Greenberg A, Johnson JP (2002) Thyroid hormone in the treatment of post-transplant acute tubular necrosis (ATN). Am J Transplant 2:57–61

    CAS  PubMed  Google Scholar 

  42. Hladunewich MA, Corrigan G, Derby GC, Ramaswamy D, Kambham N, Scandling JD, Myers BD (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64:593–602

    CAS  PubMed  Google Scholar 

  43. Schwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M, Haller H (2005) Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 5:1992–1996

    PubMed  Google Scholar 

  44. Heilman RL, Mazur MJ, Reddy KS, Moss A, Post D, Mulligan D (2005) Steroid avoidance immunosuppression in low-risk kidney transplant. Transplant Proc 37:1785–1788

    CAS  PubMed  Google Scholar 

  45. Sakai K, Miyagi Y, Hasegawa T, Itabashi Y, Muramatsu M, Sugiyama K, Kawamura T, Arai K, Aikawa A, Ohara T, Mizuiri S, Hasegawa A (2005) The pathologic impact of tacrolimus on protocol biopsy in renal transplant patients with basiliximab-based immunosuppression. Transplant Proc 37:1757–1759

    CAS  PubMed  Google Scholar 

  46. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury following cardiac surgery. Lancet 365:1231–1238

    CAS  PubMed  Google Scholar 

  47. Morrow DA, Braunwald E (2003) Future of biomarkers in acute coronary syndrome: Moving toward a multimarker strategy. Circulation 108:250–252

    PubMed  Google Scholar 

  48. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin (NGAL): a novel urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24:307–315

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Devarajan is supported by grants from the NIH/NIDDK (RO1-DK53289, P50-DK52612, R21-DK070163), a Grant-in-Aid from the American Heart Association Ohio Valley Affiliate, and a Translational Research Initiative Grant from Cincinnati Children’s Hospital Medical Center. Dr. Barasch is supported by grants from the NIH/NIDDK (RO1-DK55388, RO1 DK-58872) and a Research Grant from the March of Dimes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Devarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, J., Ma, Q., Kelly, C. et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 21, 856–863 (2006). https://doi.org/10.1007/s00467-006-0055-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0055-0

Keywords

Navigation