Skip to main content

Advertisement

Log in

Hereditary causes of kidney stones and chronic kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Adenine phosphoribosyltransferase (APRT) deficiency, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), and primary hyperoxaluria (PH) are rare but important causes of severe kidney stone disease and/or chronic kidney disease in children. Recurrent kidney stone disease and nephrocalcinosis, particularly in pre-pubertal children, should alert the physician to the possibility of an inborn error of metabolism as the underlying cause. Unfortunately, the lack of recognition and knowledge of the five disorders has frequently resulted in an unacceptable delay in diagnosis and treatment, sometimes with grave consequences. A high index of suspicion coupled with early diagnosis may reduce or even prevent the serious long-term complications of these diseases. In this paper, we review the epidemiology, clinical features, diagnosis, treatment, and outcome of patients with APRT deficiency, cystinuria, Dent disease, FHHNC, and PH, with an emphasis on childhood manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sas DJ (2011) An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin J Am Soc Nephrol 6:2062–2068

    Article  PubMed  Google Scholar 

  2. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823

    Article  PubMed  Google Scholar 

  3. Beara-Lasic L, Edvardsson V, Palsson R, Lieske J, Goldfarb D, Milliner D (2011) Genetic causes of kidney stones and kidney failure. Clin Rev Bone Miner Metab 10(6):1–18

    Google Scholar 

  4. Greenwood MC, Dillon MJ, Simmonds HA, Barratt TM, Pincott JR, Metreweli C (1982) Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr 138:346–349

    Article  PubMed  CAS  Google Scholar 

  5. Konrad M, Hou J, Weber S, Dotsch J, Kari JA, Seeman T, Kuwertz-Broking E, Peco-Antic A, Tasic V, Dittrich K, Alshaya HO, von Vigier RO, Gallati S, Goodenough DA, Schaller A (2008) CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 19:171–181

    Article  PubMed  CAS  Google Scholar 

  6. Hoppe B, Beck BB, Milliner DS (2009) The primary hyperoxalurias. Kidney Int 75:1264–1271

    Article  PubMed  CAS  Google Scholar 

  7. Rule AD, Krambeck AE, Lieske JC (2011) Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol 6:2069–2075

    Article  PubMed  Google Scholar 

  8. Edvardsson V, Palsson R, Olafsson I, Hjaltadottir G, Laxdal T (2001) Clinical features and genotype of adenine phosphoribosyltransferase deficiency in Iceland. Am J Kidney Dis 38:473–480

    Article  PubMed  CAS  Google Scholar 

  9. Bollee G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, Deteix P, Daudon M, Knebelmann B, Ceballos-Picot I (2010) Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol 21:679–688

    Article  PubMed  CAS  Google Scholar 

  10. Kelley WN, Levy RI, Rosenbloom FM, Henderson JF, Seegmiller JE (1968) Adenine phosphoribosyltransferase deficiency: a previously undescribed genetic defect in man. J Clin Invest 47:2281–2289

    Article  PubMed  CAS  Google Scholar 

  11. Sahota AS, Tischfield AJ, Kamatani N, Simmonds HA (2001) Adenine phosphoribosyltransferase deficiency and 2,8-dihydroxyadenine lithiasis. In: Scriver CRBA, Sly WS, Valle D, Vogelstein B, Childs B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2571–2584

    Google Scholar 

  12. Broderick TP, Schaff DA, Bertino AM, Dush MK, Tischfield JA, Stambrook PJ (1987) Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement. Proc Natl Acad Sci U S A 84:3349–3353

    Article  PubMed  CAS  Google Scholar 

  13. Edvardsson VO, Palsson R, Sahota A (2012) Adenine Phosphoribosyltransferase Deficiency In: GeneReviews at GeneTests: Medical Genetics Information Resource [database online]. Copyright, University of Washington, Seattle, 1997–2010. Available at http://www.genetests.org

  14. Kamatani N, Hakoda M, Otsuka S, Yoshikawa H, Kashiwazaki S (1992) Only three mutations account for almost all defective alleles causing adenine phosphoribosyltransferase deficiency in Japanese patients. J Clin Invest 90:130–135

    Article  PubMed  CAS  Google Scholar 

  15. Nasr SH, Sethi S, Cornell LD, Milliner DS, Boelkins M, Broviac J, Fidler ME (2010) Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol Dial Transplant 25:1909–1915

    Article  PubMed  CAS  Google Scholar 

  16. Hidaka Y, Tarle SA, O’Toole TE, Kelley WN, Palella TD (1987) Nucleotide sequence of the human APRT gene. Nucleic Acids Res 15:9086

    Article  PubMed  CAS  Google Scholar 

  17. Sahota A, Chen J, Boyadjiev SA, Gault MH, Tischfield JA (1994) Missense mutation in the adenine phosphoribosyltransferase gene causing 2,8-dihydroxyadenine urolithiasis. Hum Mol Genet 3:817–818

    Article  PubMed  CAS  Google Scholar 

  18. Harambat J, Bollee G, Daudon M, Ceballos-Picot I, Bensman A (2012) Adenine phosphoribosyltransferase deficiency in children. Pediatr Nephrol 27:571–579

    Article  PubMed  Google Scholar 

  19. Debray H, Cartier P, Temstet A, Cendron J (1976) Child’s urinary lithiasis revealing a complete deficit in adenine phosphoribosyl transferase. Pediatr Res 10:762–766

    PubMed  CAS  Google Scholar 

  20. Chiba P, Zwiauer K, Muller MM (1988) Characterization of an adenine phosphoribosyltransferase deficiency. Clin Chim Acta 172:141–147

    Article  PubMed  CAS  Google Scholar 

  21. Cassidy MJ, McCulloch T, Fairbanks LD, Simmonds HA (2004) Diagnosis of adenine phosphoribosyltransferase deficiency as the underlying cause of renal failure in a renal transplant recipient. Nephrol Dial Transplant 19:736–738

    Article  PubMed  Google Scholar 

  22. Benedetto B, Madden R, Kurbanov A, Braden G, Freeman J, Lipkowitz GS (2001) Adenine phosphoribosyltransferase deficiency and renal allograft dysfunction. Am J Kidney Dis 37:E37

    Article  PubMed  CAS  Google Scholar 

  23. Becker MA, Schumacher HR Jr, Wortmann RL, MacDonald PA, Palo WA, Eustace D, Vernillet L, Joseph-Ridge N (2005) Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase: a twenty-eight-day, multicenter, phase II, randomized, double-blind, placebo-controlled, dose–response clinical trial examining safety and efficacy in patients with gout. Arthritis Rheum 52:916–923

    Article  PubMed  CAS  Google Scholar 

  24. Milliner DS, Murphy ME (1993) Urolithiasis in pediatric patients. Mayo Clin Proc 68:241–248

    Article  PubMed  CAS  Google Scholar 

  25. Chillaron J, Font-Llitjos M, Fort J, Zorzano A, Goldfarb DS, Nunes V, Palacin M (2010) Pathophysiology and treatment of cystinuria. Nat Rev Nephrol 6:424–434

    Article  PubMed  CAS  Google Scholar 

  26. Fernandez E, Carrascal M, Rousaud F, Abian J, Zorzano A, Palacin M, Chillaron J (2002) rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Renal Physiol 283:F540–548

    PubMed  CAS  Google Scholar 

  27. Martens K, Jaeken J, Matthijs G, Creemers JW (2008) Multi-system disorder syndromes associated with cystinuria type I. Curr Mol Med 8:544–550

    Article  PubMed  CAS  Google Scholar 

  28. Dello Strologo L, Laurenzi C, Legato A, Pastore A (2007) Cystinuria in children and young adults: success of monitoring free-cystine urine levels. Pediatr Nephrol 22:1869–1873

    Article  PubMed  Google Scholar 

  29. Lambert EH, Asplin JR, Herrell SD, Miller NL (2010) Analysis of 24-hour urine parameters as it relates to age of onset of cystine stone formation. J Endourol 24:1179–1182

    Article  PubMed  Google Scholar 

  30. Worcester EM, Coe FL, Evan AP, Parks JH (2006) Reduced renal function and benefits of treatment in cystinuria vs other forms of nephrolithiasis. BJU Int 97:1285–1290

    Article  PubMed  CAS  Google Scholar 

  31. Assimos DG, Leslie SW, Ng C, Streem SB, Hart LJ (2002) The impact of cystinuria on renal function. J Urol 168:27–30

    Article  PubMed  Google Scholar 

  32. Nakagawa Y, Coe FL (1999) A modified cyanide-nitroprusside method for quantifying urinary cystine concentration that corrects for creatinine interference. Clin Chim Acta 289:57–68

    Article  PubMed  CAS  Google Scholar 

  33. Evan AP, Coe FL, Lingeman JE, Shao Y, Matlaga BR, Kim SC, Bledsoe SB, Sommer AJ, Grynpas M, Phillips CL, Worcester EM (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227–2235

    Article  PubMed  CAS  Google Scholar 

  34. Boutros M, Vicanek C, Rozen R, Goodyer P (2005) Transient neonatal cystinuria. Kidney Int 67:443–448

    Article  PubMed  CAS  Google Scholar 

  35. Goldfarb DS, Coe FL, Asplin JR (2006) Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int 69:1041–1047

    Article  PubMed  CAS  Google Scholar 

  36. Rodman JS, Blackburn P, Williams JJ, Brown A, Pospischil MA, Peterson CM (1984) The effect of dietary protein on cystine excretion in patients with cystinuria. Clin Nephrol 22:273–278

    PubMed  CAS  Google Scholar 

  37. Chow GK, Streem SB (1996) Medical treatment of cystinuria: results of contemporary clinical practice. J Urol 156:1576–1578

    Article  PubMed  CAS  Google Scholar 

  38. Nakagawa Y, Asplin JR, Goldfarb DS, Parks JH, Coe FL (2000) Clinical use of cystine supersaturation measurements. J Urol 164:1481–1485

    Article  PubMed  CAS  Google Scholar 

  39. Dolin DJ, Asplin JR, Flagel L, Grasso M, Goldfarb DS (2005) Effect of cystine-binding thiol drugs on urinary cystine capacity in patients with cystinuria. J Endourol 19:429–432

    Article  PubMed  Google Scholar 

  40. Pareek G, Steele TH, Nakada SY (2005) Urological intervention in patients with cystinuria is decreased with medical compliance. J Urol 174:2250–2252

    Article  PubMed  Google Scholar 

  41. Trinchieri A, Montanari E, Zanetti G, Lizzano R (2007) The impact of new technology in the treatment of cystine stones. Urol Res 35:129–132

    Article  PubMed  Google Scholar 

  42. Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. Q J Med 87:473–493

    CAS  Google Scholar 

  43. Lloyd SE, Gunther W, Pearce SH, Thomson A, Bianchi ML, Bosio M, Craig IW, Fisher SE, Scheinman SJ, Wrong O, Jentsch TJ, Thakker RV (1997) Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Hum Mol Genet 6:1233–1239

    Article  PubMed  CAS  Google Scholar 

  44. Thakker RV (2000) Pathogenesis of Dent’s disease and related syndromes of X-linked nephrolithiasis. Kidney Int 57:787–793

    Article  PubMed  CAS  Google Scholar 

  45. Reinhart SC, Norden AG, Lapsley M, Thakker RV, Pang J, Moses AM, Frymoyer PA, Favus MJ, Hoepner JA, Scheinman SJ (1995) Characterization of carrier females and affected males with X-linked recessive nephrolithiasis. J Am Soc Nephrol 5:1451–1461

    PubMed  CAS  Google Scholar 

  46. Waldegger S, Jentsch TJ (2000) From tonus to tonicity: physiology of CLC chloride channels. J Am Soc Nephrol 11:1331–1339

    PubMed  CAS  Google Scholar 

  47. Dutzler R (2004) Structural basis for ion conduction and gating in ClC chloride channels. FEBS Lett 564:229–233

    Article  PubMed  CAS  Google Scholar 

  48. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A 95:8075–8080

    Article  PubMed  CAS  Google Scholar 

  49. Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet 8:247–257

    Article  PubMed  CAS  Google Scholar 

  50. Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005) Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem Biophys Res Commun 329:941–946

    Article  PubMed  CAS  Google Scholar 

  51. Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423

    Article  PubMed  CAS  Google Scholar 

  52. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427

    Article  PubMed  CAS  Google Scholar 

  53. Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–1401

    Article  PubMed  CAS  Google Scholar 

  54. Friedrich T, Breiderhoff T, Jentsch TJ (1999) Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem 274:896–902

    Article  PubMed  CAS  Google Scholar 

  55. Hryciw DH, Ekberg J, Pollock CA, Poronnik P (2006) ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 38:1036–1042

    Article  PubMed  CAS  Google Scholar 

  56. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373

    Article  PubMed  CAS  Google Scholar 

  57. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945

    Article  PubMed  CAS  Google Scholar 

  58. Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci U S A 100:8472–8477

    Article  PubMed  CAS  Google Scholar 

  59. Silva IV, Cebotaru V, Wang H, Wang XT, Wang SS, Guo G, Devuyst O, Thakker RV, Guggino WB, Guggino SE (2003) The ClC-5 knockout mouse model of Dent’s disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res 18:615–623

    Article  PubMed  CAS  Google Scholar 

  60. Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249

    PubMed  CAS  Google Scholar 

  61. Devuyst O, Thakker RV (2010) Dent’s disease. Orphanet J Rare Dis 5:28

    Article  PubMed  Google Scholar 

  62. Claverie-Martin F, Ramos-Trujillo E, Garcia-Nieto V (2011) Dent’s disease: clinical features and molecular basis. Pediatr Nephrol 26:693–704

    Article  PubMed  Google Scholar 

  63. Hoopes RR Jr, Raja KM, Koich A, Hueber P, Reid R, Knohl SJ, Scheinman SJ (2004) Evidence for genetic heterogeneity in Dent’s disease. Kidney Int 65:1615–1620

    Article  PubMed  CAS  Google Scholar 

  64. Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent Disease with mutations in OCRL1. Am J Hum Genet 76:260–267

    Article  PubMed  CAS  Google Scholar 

  65. Ghanekar Y, Lowe M (2005) Signalling for secretion. Nat Cell Biol 7:851–853

    Article  PubMed  CAS  Google Scholar 

  66. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    Article  PubMed  CAS  Google Scholar 

  67. Tosetto E, Addis M, Caridi G, Meloni C, Emma F, Vergine G, Stringini G, Papalia T, Barbano G, Ghiggeri GM, Ruggeri L, Miglietti N, D Angelo A, Melis MA, Anglani F (2009) Locus heterogeneity of Dent’s disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations. Pediatr Nephrol 24:1967–1973

    Article  PubMed  Google Scholar 

  68. Hichri H, Rendu J, Monnier N, Coutton C, Dorseuil O, Poussou RV, Baujat G, Blanchard A, Nobili F, Ranchin B, Remesy M, Salomon R, Satre V, Lunardi J (2011) From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat 32:379–388

    Article  PubMed  CAS  Google Scholar 

  69. Copelovitch L, Nash MA, Kaplan BS (2007) Hypothesis: Dent disease is an underrecognized cause of focal glomerulosclerosis. Clin J Am Soc Nephrol 2:914–918

    Article  PubMed  CAS  Google Scholar 

  70. Frishberg Y, Dinour D, Belostotsky R, Becker-Cohen R, Rinat C, Feinstein S, Navon-Elkan P, Ben-Shalom E (2009) Dent’s disease manifesting as focal glomerulosclerosis: is it the tip of the iceberg? Pediatr Nephrol 24:2369–2373

    Article  PubMed  Google Scholar 

  71. Bokenkamp A, Bockenhauer D, Cheong HI, Hoppe B, Tasic V, Unwin R, Ludwig M (2009) Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr 155:94–99

    Article  PubMed  Google Scholar 

  72. Davey PG, Gosling P (1982) Beta 2-microglobulin instability in pathological urine. Clin Chem 28:1330–1333

    PubMed  CAS  Google Scholar 

  73. Suzuki S, Suzuki J, Kume K, Yoshida K, Suyama H, Kawasaki Y, Nozawa R, Suzuki H, Fujiki T, Kamiyama S, Suzuki A (1999) Poor renal accumulation of 99mTc-DMSA in idiopathic tubular proteinuria. Nephron 81:49–54

    Article  PubMed  CAS  Google Scholar 

  74. Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, Guggino SE (2005) High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int 68:642–652

    Article  PubMed  CAS  Google Scholar 

  75. Michelis MF, Drash AL, Linarelli LG, De Rubertis FR, Davis BB (1972) Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis. (Evaluation of the pathophysiological role of parathyroid hormone). Metabolism 21:905–920

    Article  PubMed  CAS  Google Scholar 

  76. Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E, Gregoric A, Palcoux JB, Tasic V, Manz F, Scharer K, Seyberth HW, Konrad M (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881

    PubMed  CAS  Google Scholar 

  77. Faguer S, Chauveau D, Cintas P, Tack I, Cointault O, Rostaing L, Vargas-Poussou R, Ribes D (2011) Renal, ocular, and neuromuscular involvements in patients with CLDN19 mutations. Clin J Am Soc Nephrol 6:355–360

    Article  PubMed  CAS  Google Scholar 

  78. Godron A, Harambat J, Boccio V, Mensire A, May A, Rigothier C, Couzi L, Barrou B, Godin M, Chauveau D, Faguer S, Vallet M, Cochat P, Eckart P, Guest G, Guigonis V, Houillier P, Blanchard A, Jeunemaitre X, Vargas-Poussou R (2012) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol 7:801–809

    Article  PubMed  CAS  Google Scholar 

  79. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M (1987) Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol 1:465–472

    Article  PubMed  CAS  Google Scholar 

  80. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  81. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed  CAS  Google Scholar 

  82. Li J, Ananthapanyasut W, Yu AS (2011) Claudins in renal physiology and disease. Pediatr Nephrol 26:2133–2142

    Article  PubMed  Google Scholar 

  83. Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, Demontis R, Fournier A, Paillard M, Houillier P (2001) Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int 59:2206–2215

    PubMed  CAS  Google Scholar 

  84. Haisch L, Almeida JR, Abreu da Silva PR, Schlingmann KP, Konrad M (2011) The role of tight junctions in paracellular ion transport in the renal tubule: lessons learned from a rare inherited tubular disorder. Am J Kidney Dis 57:320–330

    Article  PubMed  CAS  Google Scholar 

  85. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    PubMed  CAS  Google Scholar 

  86. Hou J, Paul DL, Goodenough DA (2005) Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118:5109–5118

    Article  PubMed  CAS  Google Scholar 

  87. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118:619–628

    PubMed  CAS  Google Scholar 

  88. Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106:15350–15355

    Article  PubMed  CAS  Google Scholar 

  89. Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA (2007) Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 282:17114–17122

    Article  PubMed  CAS  Google Scholar 

  90. Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 116:878–891

    Article  PubMed  CAS  Google Scholar 

  91. Hampson G, Konrad MA, Scoble J (2008) Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): compound heterozygous mutation in the claudin 16 (CLDN16) gene. BMC Nephrol 9:12

    Article  PubMed  CAS  Google Scholar 

  92. Stechman MJ, Loh NY, Thakker RV (2009) Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol 24:2321–2332

    Article  PubMed  Google Scholar 

  93. Praga M, Vara J, Gonzalez-Parra E, Andres A, Alamo C, Araque A, Ortiz A, Rodicio JL (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419–1425

    Article  PubMed  CAS  Google Scholar 

  94. Zimmermann B, Plank C, Konrad M, Stohr W, Gravou-Apostolatou C, Rascher W, Dotsch J (2006) Hydrochlorothiazide in CLDN16 mutation. Nephrol Dial Transplant 21:2127–2132

    Article  PubMed  CAS  Google Scholar 

  95. Lieske JC, Spargo BH, Toback FG (1992) Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type 1 primary hyperoxaluria. J Urol 148:1517–1519

    PubMed  CAS  Google Scholar 

  96. Muda AO, Barsotti P, Rinaldi S, Rizzoni G, Faraggiana T (1997) Renal pathology in hyperoxaluria. In: Sessa A, Conte F, Meroni M, Battini G (eds) Hereditary kidney diseases. Karger, Basel, pp 160–166

    Chapter  Google Scholar 

  97. van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg FA (2003) Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transplant 18:273–279

    Article  PubMed  Google Scholar 

  98. Cochat P, Liutkus A, Fargue S, Basmaison O, Ranchin B, Rolland MO (2006) Primary hyperoxaluria type 1: still challenging! Pediatr Nephrol 21:1075–1081

    Article  PubMed  Google Scholar 

  99. Coulter-Mackie MB (2005) Preliminary evidence for ethnic differences in primary hyperoxaluria type 1 genotype. Am J Nephrol 25:264–268

    Article  PubMed  Google Scholar 

  100. Danpure CJ (2005) Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 25:303–310

    Article  PubMed  Google Scholar 

  101. Milliner DS (2005) The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol 25:154–160

    Article  PubMed  Google Scholar 

  102. Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, Monico CG, Feinstein S, Ben-Shalom E, Magen D, Weissman I, Charon C, Frishberg Y (2010) Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 87:392–399

    Article  PubMed  CAS  Google Scholar 

  103. Monico CG, Rossetti S, Belostotsky R, Cogal AG, Herges RM, Seide BM, Olson JB, Bergstrahl EJ, Williams HJ, Haley WE, Frishberg Y, Milliner DS (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 6:2289–2295

    Article  PubMed  CAS  Google Scholar 

  104. Riedel TJ, Johnson LC, Knight J, Hantgan RR, Holmes RP, Lowther WT (2011) Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 6:e26021

    Article  PubMed  CAS  Google Scholar 

  105. Monico CG, Rossetti S, Olson JB, Milliner DS (2005) Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 67:1704–1709

    Article  PubMed  CAS  Google Scholar 

  106. Monico CG, Rossetti S, Schwanz HA, Olson JB, Lundquist PA, Dawson DB, Harris PC, Milliner DS (2007) Comprehensive mutation screening in 55 probands with type 1 primary hyperoxaluria shows feasibility of a gene-based diagnosis. J Amer Soc Nephrol 18:1905–1914

    Article  CAS  Google Scholar 

  107. Lieske JC, Monico CG, Holmes WS, Bergstralh EJ, Slezak JM, Rohlinger AL, Olson JB, Milliner DS (2005) International registry for primary hyperoxaluria. Am J Nephrol 25:290–296

    Article  PubMed  Google Scholar 

  108. Harambat J, Fargue S, Acquaviva C, Gagnadoux MF, Janssen F, Liutkus A, Mourani C, Macher MA, Abramowicz D, Legendre C, Durrbach A, Tsimaratos M, Nivet H, Girardin E, Schott AM, Rolland MO, Cochat P (2010) Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int 77:443–449

    Article  PubMed  CAS  Google Scholar 

  109. Frishberg Y, Rinat C, Shalata A, Khatib I, Feinstein S, Becker-Cohen R, Weismann I, Wanders RJ, Rumsby G, Roels F, Mandel H (2005) Intra-familial clinical heterogeneity: absence of genotype-phenotype correlation in primary hyperoxaluria type 1 in Israel. Am J Nephrol 25:269–275

    Article  PubMed  Google Scholar 

  110. Hoppe B, Langman CB (2003) A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol 18:986–991

    Article  PubMed  Google Scholar 

  111. Milliner D (2006) Treatment of the primary hyperoxalurias: a new chapter. Kidney Int 70:1198–1200

    Article  PubMed  CAS  Google Scholar 

  112. Leumann E, Hoppe B, Neuhaus T (1993) Management of primary hyperoxaluria: efficacy of oral citrate administration. Pediatr Nephrol 7:207–211

    Article  PubMed  CAS  Google Scholar 

  113. Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26:3609–3615

    Article  PubMed  Google Scholar 

  114. Monico CG, Olson JB, Milliner DS (2005) Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol 25:183–188

    Article  PubMed  CAS  Google Scholar 

  115. Illies F, Bonzel KE, Wingen AM, Latta K, Hoyer PF (2006) Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int 70:1642–1648

    Article  PubMed  CAS  Google Scholar 

  116. Bergstralh EJ, Monico CG, Lieske JC, Herges RM, Langman CB, Hoppe B, Milliner DS (2010) Transplantation outcomes in primary hyperoxaluria. Am J Transplant 10:2493–2501

    Article  PubMed  CAS  Google Scholar 

  117. Millan MT, Berquist WE, So SK, Sarwal MM, Wayman KI, Cox KL, Filler G, Salvatierra O Jr, Esquivel CO (2003) One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation 76:1458–1463

    Article  PubMed  Google Scholar 

  118. Silva M, Silva CH, Iulek J, Thiemann OH (2004) Three-dimensional structure of human adenine phosphoribosyltransferase and its relation to DHA-urolithiasis. Biochemistry 43:7663–7671

    Article  PubMed  CAS  Google Scholar 

  119. Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP (1997) Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr 131:252–257

    Article  PubMed  CAS  Google Scholar 

  120. Hoppe B, Kemper MJ (2010) Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol 25:403–413

    Article  PubMed  Google Scholar 

  121. Rumsby G (1998) Experience in prenatal diagnosis of primary hyperoxaluria type 1. J Nephrol 11(Suppl 1):13–14

    PubMed  Google Scholar 

  122. Barratt TM, Kasidas GP, Murdoch I, Rose GA (1991) Urinary oxalate and glycolate excretion and plasma oxalate concentration. Arch Dis Child 66:501–503

    Article  PubMed  CAS  Google Scholar 

  123. von Schnakenburg C, Byrd DJ, Latta K, Reusz GS, Graf D, Brodehl J (1994) Determination of oxalate excretion in spot urines of healthy children by ion chromatography. Eur J Clin Chem Clin Biochem 32:27–29

    Google Scholar 

  124. Gibbs DA, Watts RW (1969) The variation of urinary oxalate excretion with age. J Lab Clin Med 73:901–908

    PubMed  CAS  Google Scholar 

  125. Morgenstern BZ, Milliner DS, Murphy ME, Simmons PS, Moyer TP, Wilson DM, Smith LH (1993) Urinary oxalate and glycolate excretion patterns in the first year of life: a longitudinal study. J Pediatr 123:248–251

    Article  PubMed  CAS  Google Scholar 

  126. Campfield T, Braden G (1989) Urinary oxalate excretion by very low birth weight infants receiving parenteral nutrition. Pediatrics 84:860–863

    PubMed  CAS  Google Scholar 

  127. Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH (1994) Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med 331:1553–1558

    Article  PubMed  CAS  Google Scholar 

  128. Morgan SH, Purkiss P, Watts RW, Mansell MA (1987) Oxalate dynamics in chronic renal failure. Comparison with normal subjects and patients with primary hyperoxaluria. Nephron 46:253–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Rare Kidney Stone Consortium (U54KD083908), a part of the National Institutes of Health (NIH) Rare Diseases Clinical Research Network (RDCRN), funded by the NIDDK, and the NIH Office of Rare Diseases Research (ORDR) and the Mayo Clinic O’Brien Urology Research Center (P50 DK083007) funded by the NIDDK. We thank Rachel Miller of the Mayo Clinic Renal Function Laboratory for photomicrographs of cystine, calcium oxalate, and calcium phosphate crystals, and Hrafnhildur L. Runolfsdottir, a medical student at the University of Iceland, Reykjavik, Iceland, for generating the images of urinary DHA crystals. The authors also thank members of the Rare Kidney Stone Consortium for critical feedback during construction of the diagnostic algorithms (Figs. 3, 4, 5, 6 and 7).

Conflict of interest statement

Dr. Goldfarb is a consultant for Takeda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidar O. Edvardsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edvardsson, V.O., Goldfarb, D.S., Lieske, J.C. et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol 28, 1923–1942 (2013). https://doi.org/10.1007/s00467-012-2329-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2329-z

Keywords

Navigation