Skip to main content

Advertisement

Log in

Pharmacokinetic and Pharmacodynamic Issues in the Treatment of Bacterial Infectious Diseases

  • Review
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

This review outlines some of the many factors a clinician must consider when selecting an antimicrobial dosing regimen for the treatment of infection. Integration of the principles of antimicrobial pharmacology and the pharmacokinetic parameters of an individual patient provides the most comprehensive assessment of the interactions between pathogen, host, and antibiotic. For each class of agent, appreciation of the different approaches to maximize microbial killing will allow for optimal clinical efficacy and reduction in risk of development of resistance while avoiding excessive exposure and minimizing risk of toxicity. Disease states with special considerations for antimicrobial use are reviewed, as are situations in which pathophysiologic changes may alter the pharmacokinetic handling of antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eagle H, Fleischman R, Musselman AD (1950) Effect of schedule of administration on therapeutic efficacy of penicillin: importance of the aggregate time penicillin remains at effectively bactericidal levels. Am J Med 9:280–299

    PubMed  Google Scholar 

  2. Noone P, Parsons TM, Pattison JR, Slack RC, Garfield-Davies D, Hughes K (1974) Experience in monitoring gentamicin therapy during treatment of serious gram-negative sepsis. Br Med J 1:477–481

    CAS  PubMed  Google Scholar 

  3. Moore RD, Smith CR, Lietman PS (1984) The association of aminoglycoside plasma levels with mortality in patients with gram-negative bacteremia. J Infect Dis 149:443–448

    CAS  PubMed  Google Scholar 

  4. Moore RD, Smith CR, Lietman PS (1984) Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am J Med 77:657–662

    CAS  PubMed  Google Scholar 

  5. Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155:93–99

    Google Scholar 

  6. Rougier F, Claude D, Maurin M, Sedoglavic A, Ducher M, Corvaisier S, Jelliffe R, Maire P (2003) Aminoglycoside nephrotoxicity: modeling, simulation, and control. Antimicrob Agents Chemother 47:1010–1016

    Article  CAS  PubMed  Google Scholar 

  7. Murry KR, McKinnon PS, Mitrzyk B, Rybak MJ (1999) Pharmacodynamic characterization of nephrotoxicity associated with once-daily aminoglycoside. Pharmacotherapy 19:1252–1260

    CAS  PubMed  Google Scholar 

  8. McCormack JP, Schentag JJ (1987) Potential impact of quantitative susceptibility tests on the design of aminoglycoside dosing regimens. Drug Intell Clin Pharm 21:187–192

    CAS  PubMed  Google Scholar 

  9. Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr (1999) Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 43:623–629

    Google Scholar 

  10. Bayer AS, Norman D, Kim KS (1985) Efficacy of amikacin and ceftazidime in experimental aortic valve endocarditis due to Pseudomonas aeruginosa. Antimicrob Agents Chemother 28:781–785

    CAS  PubMed  Google Scholar 

  11. Schentag JJ, Nix DE, Forrest A (1993) Pharmacodynamics of the fluoroquinolones. In: Quinolone antimicrobial agents. American Society for Microbiology, Washington, DC

  12. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081

    CAS  PubMed  Google Scholar 

  13. Dudley MN (1991) Pharmacodynamics and pharmacokinetics of antibiotics with special reference to the fluoroquinolones. Am J Med 91 (Suppl 6A):45–50

    PubMed  Google Scholar 

  14. Blaser J, Stone BB, Groner MC, Zinner SH (1987) Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 31:1054–1060

    CAS  PubMed  Google Scholar 

  15. Hyatt JM, Nix DE, Schentag JJ (1994) Pharmacokinetic and pharmacodynamic activities of ciprofloxacin against strains of Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa for which MICs are similar. Antimicrob Agents Chemother 38:2730–2737

    CAS  PubMed  Google Scholar 

  16. Dudley MN, Mandler HD, Gilbert D, Ericson J, Mayer KH, Zinner SH (1987) Pharmacokinetics and pharmacodynamics of intravenous ciprofloxacin. Studies in vivo and in an in vitro dynamic model. Am J Med 82:363–368

    CAS  Google Scholar 

  17. Schentag JJ, Nix DE, Adelman MH (1991) Mathematical examination of dual individualization principles (I): relationships between AUC above MIC and area under the inhibitory curve for cefmenoxime, ciprofloxacin, and tobramycin. Drug Intell Clin Pharm 25:1050–1057

    CAS  Google Scholar 

  18. Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, Reichl V, Natarajan J, Corrado M (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 279:125–129

    CAS  PubMed  Google Scholar 

  19. Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF (2001) Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 45:2793–2797

    Article  CAS  PubMed  Google Scholar 

  20. Lister PD (2002) Pharmacodynamics of gatifloxacin against Streptococcus pneumoniae in an in vitro pharmacokinetic model: impact of area under the curve/MIC ratios on eradication. Antimicrob Agents Chemother 46:69–74

    Article  CAS  PubMed  Google Scholar 

  21. Lister PD, Sanders CC (1999) Pharmacodynamics of trovafloxacin, ofloxacin, and ciprofloxacin against Streptococcus pneumoniae in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 43:1118–1123

    Google Scholar 

  22. Vogelman B, Craig WA (1986) Kinetics of antimicrobial activity. J Pediatr 108:835–840

    CAS  PubMed  Google Scholar 

  23. Craig WA, Ebert SC (1990) Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis 74 (Suppl):63–70

    CAS  Google Scholar 

  24. Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158:831–847

    CAS  PubMed  Google Scholar 

  25. White CA, Toothaker RD, Smith AL, Slattery JT (1989) In vitro evaluation of the determinants of bactericidal activity of ampicillin dosing regimens against Escherichia coli. Antimicrob Agents Chemother 33:1046–1051

    CAS  PubMed  Google Scholar 

  26. Schentag JJ, Smith IL, Swanson DJ, DeAngelis C, Fracasso JE, Vari A, Vance JW (1984) Role for dual individualization with cefmenoxime. Am J Med 77:43–50

    CAS  Google Scholar 

  27. Grasso S, Meinardi G, de Carneri I, Tamassia V (1978) New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob Agents Chemother 13:570–576

    CAS  PubMed  Google Scholar 

  28. Nishida M, Murakawa T, Kamimura T, Okada N (1978) Bactericidal activity of cephalosporins in an in vitro model simulating serum levels. Antimicrob Agents Chemother 14:6–12

    CAS  PubMed  Google Scholar 

  29. Zinner SH, Dudley MN, Gilbert D, Bassignani M (1988) Effect of dose and schedule on cefoperazone pharmacodynamics in an in vitro model of infection in a neutropenic host. Am J Med 85:56–58

    CAS  Google Scholar 

  30. Gerber AU, Craig WA, Brugger HP, Feller C, Vastola AP, Brandel J (1983) Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J Infect Dis 147:910–917

    CAS  PubMed  Google Scholar 

  31. Onyeji CO, Nicolau DP, Nightingale CH, Quintiliani R (1994) Optimal times above MICs of ceftibuten and cefaclor in experimental intra-abdominal infections. Antimicrob Agents Chemother 38:1112–1117

    CAS  PubMed  Google Scholar 

  32. Bodey GP, Ketchel SJ, Rodriguez V (1979) A randomized study of carbenicillin plus cefamandole or tobramycin in the treatment of febrile episodes in cancer patients. Am J Med 67:608–616

    CAS  PubMed  Google Scholar 

  33. Tam VH, McKinnon PS, Akins RL, Drusano GL, Rybak MJ (2003) Pharmacokinetics and pharmacodynamics of cefepime in patients with various degrees of renal function. Antimicrob Agents Chemother 47:1853–1861

    Article  CAS  PubMed  Google Scholar 

  34. Edwards DJ, Pancorbo S (1987) Routine monitoring of serum vancomycin concentrations: waiting for proof of its value. Clin Pharm 6:652–654

    CAS  PubMed  Google Scholar 

  35. Cantu TG, Yamanaka-Yuen NA, Lietman PS (1994) Serum vancomycin concentrations: reappraisal of their clinical value. Clin Infect Dis 18:533–543

    CAS  PubMed  Google Scholar 

  36. Freeman CD, Quintiliani R, Nightingale CH (1993) Vancomycin therapeutic drug monitoring: is it necessary? Ann Pharmacother 27:594–598

    CAS  PubMed  Google Scholar 

  37. Flandrois JP, Fardel G, Carret G (1988) Early stages of in vitro killing curve of LY146032 and vancomycin for Staphylococcus aureus. Antimicrob Agents Chemother 32:454–457

    CAS  PubMed  Google Scholar 

  38. Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum AM, Broek P van den, Mattie H (1990) Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother 34:1869–1874

    CAS  PubMed  Google Scholar 

  39. Cantoni L, Glauser MP, Bille J (1990) Comparative efficacy of daptomycin, vancomycin, and cloxacillin for the treatment of Staphylococcus aureus endocarditis in rats and role of test conditions in this determination. Antimicrob Agents Chemother 34:2348–2353

    CAS  PubMed  Google Scholar 

  40. Caillon J, Juvin ME, Pirault JL, Drugeon HB (1989) Bactericidal effect of daptomycin compared with vancomycin and teicoplanin against gram-positive bacteria. Pathol Biol (Paris) 37: 540–548

    CAS  PubMed  Google Scholar 

  41. Moise PA, Forrest A, Bhavnani SM, Birmingham MC, Schentag JJ (2000) Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am J Health Syst Pharm 57 (Suppl 2):4–9

    Google Scholar 

  42. Cockroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    CAS  PubMed  Google Scholar 

  43. Nauta EH, Mattie H (1976) Dicloxacillin and cloxacillin: pharmacokinetics in healthy and hemodialysis subjects. Clin Pharmacol Ther 20:98–108

    CAS  PubMed  Google Scholar 

  44. Barza M, Weinstein L (1976) Pharmacokinetics of the penicillins in man. Clin Pharmacokinet 1:297–308

    CAS  PubMed  Google Scholar 

  45. Martin C, Thomachot L, Albanese J (1994) Clinical pharmacokinetics of cefotetan. Clin Pharmacokinet 26:248–258

    CAS  PubMed  Google Scholar 

  46. Yuk JH, Nightingale CH, Quintiliani R (1989) Clinical pharmacokinetics of ceftriaxone. Clin Pharmacokinet 17:223–235

    CAS  PubMed  Google Scholar 

  47. Jelliffe RW (1973) Creatinine clearance: bedside estimate. Ann Intern Med 79:604–605

    CAS  PubMed  Google Scholar 

  48. Avant GR, Schenker S, Alford RH (1975) The effect of cirrhosis on the disposition and elimination of clindamycin. Am J Dig Dis 20:223–230

    CAS  PubMed  Google Scholar 

  49. Holdiness MR (1984) Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet 9:511–544

    CAS  PubMed  Google Scholar 

  50. Westphal JF, Brogard JM (1993) Clinical pharmacokinetics of newer antibacterial agents in liver disease. Clin Pharmacokinet 24:46–58

    CAS  PubMed  Google Scholar 

  51. Bodenham A, Shelly MP, Park GR (1988) The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clin Pharmacokinet 14:347–373

    CAS  PubMed  Google Scholar 

  52. Bush LM, Levison ME (1988) Antibiotic selection and pharmacokinetics in the critically ill. Crit Care Clin 4:299–324

    CAS  PubMed  Google Scholar 

  53. De Paepe P, Belpaire FM, Buylaert WA (2002) Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock. Clin Pharmacokinet 41:1135–1151

    PubMed  Google Scholar 

  54. Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24:1072–1078

    CAS  PubMed  Google Scholar 

  55. Power BM, Forbes AM, van Heerden PV, Ilett KF (1998) Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet 34:25–56

    CAS  PubMed  Google Scholar 

  56. Bock HA (1998) Pathophysiology of acute renal failure in septic shock: from prerenal to renal failure. Kidney Int 64 (Suppl):15–18

    Google Scholar 

  57. Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R (1995) Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother 39:650–655

    CAS  Google Scholar 

  58. Barletta JF, Johnson SB, Nix DE, Nix LC, Erstad BL (2000) Population pharmacokinetics of aminoglycosides in critically ill trauma patients on once-daily regimens. J Trauma 49:869–872

    CAS  PubMed  Google Scholar 

  59. Triginer C, Izquierdo I, Fernandez R, Rello J, Torrent J, Benito S, Net A (1990) Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med 16:303–306

    CAS  PubMed  Google Scholar 

  60. McKindley DS, Fabian TC, Boucher BA, Croce MA, Proctor KG (1995) Antibiotic pharmacokinetics following fluid resuscitation from traumatic shock. Arch Surg 130:1321–1329

    CAS  PubMed  Google Scholar 

  61. McKindley DS, Boucher BA, Hess MM, Croce MA, Fabian TC (1996) Pharmacokinetics of aztreonam and imipenem in critically ill patients with pneumonia. Pharmacotherapy 16:924–931

    CAS  PubMed  Google Scholar 

  62. Benko AS, Cappelletty DM, Kruse JA, Rybak MJ (1996) Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob Agents Chemother 40:691–695

    CAS  PubMed  Google Scholar 

  63. Mouton JW, Hollander JG den (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38:931–936

    CAS  PubMed  Google Scholar 

  64. Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL (2002) Pharmacodynamics of cefepime in patients with gram-negative infections. J Antimicrob Chemother 50:425–428

    Article  CAS  PubMed  Google Scholar 

  65. Bellmann R, Egger P, Gritsch W, Bellmann-Weiler R, Joannidis M, Dunzendorfer S, Wiedermann CJ (2002) Elimination of levofloxacin in critically ill patients with renal failure: influence of continuous veno-venous hemofiltration. Int J Clin Pharmacol Ther 40:142–149

    CAS  PubMed  Google Scholar 

  66. Buijk SL, VandenBergh MF, Mouton JW (1996) Bioavailability of ciprofloxacin after multiple oral and intravenous doses in intensive care patients with gram-negative intra-abdominal infections. Intensive Care Med 22 (Suppl 3):391

    Google Scholar 

  67. Rebuck JA, Fish DN, Abraham E (2002) Pharmacokinetics of intravenous and oral levofloxacin in critically ill adults in a medical intensive care unit. Pharmacotherapy 22:1216–1225

    CAS  PubMed  Google Scholar 

  68. Mueller BA, Brierton DG, Abel SR, Bowman L (1994) Effect of enteral feeding with Ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 38:2101–2105

    CAS  PubMed  Google Scholar 

  69. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin. Antimicrob Agents Chemother 36:830–832

    CAS  PubMed  Google Scholar 

  70. Boucher BA, Kuhl DA, Hickerson WL (1992) Pharmacokinetics of systemically administered antibiotics in patients with thermal injury. Clin Infect Dis 14:458–463

    CAS  PubMed  Google Scholar 

  71. Zaske DE, Sawchuk RJ, Gerding DN, Strate RG (1976) Increased dosage requirements of gentamicin in burn patients. J Trauma 16:824–828

    CAS  PubMed  Google Scholar 

  72. Rybak MJ, Albrecht LM, Berman JR, Warbasse LH, Svensson CK (1990) Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrob Agents Chemother 34:792–795

    CAS  PubMed  Google Scholar 

  73. Boucher BA, Hickerson WL, Kuhl DA, Bombassaro AM, Jaresko GS (1990) Imipenem pharmacokinetics in patients with burns. Clin Pharmacol Ther 48:130–137

    CAS  PubMed  Google Scholar 

  74. Bearden DT, Rodvold KA (2000) Dosage adjustments for antibacterials in obese patients: applying clinical pharmacokinetics. Clin Pharmacokinet 38:415–426

    CAS  PubMed  Google Scholar 

  75. Traynor AM, Nafziger AN, Bertino JS Jr (1995) Aminoglycoside dosing weight correction factors for patients of various body sizes. Antimicrob Agents Chemother 39:545–548

    CAS  PubMed  Google Scholar 

  76. Bauer LA, Edwards WA, Dellinger EP, Simonowitz DA (1983) Influence of weight on aminoglycoside pharmacokinetics in normal weight and morbidly obese patients. Eur J Clin Pharmacol 24:643–647

    CAS  PubMed  Google Scholar 

  77. Blouin RA, Bauer LA, Miller DD, Record KE, Griffen WO Jr (1982) Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother 21:575–580

    CAS  PubMed  Google Scholar 

  78. Yost RL, Derendorf H (1986) Disposition of cefotaxime and its desacetyl metabolite in morbidly obese male and female subjects. Ther Drug Monit 8:189–194

    CAS  PubMed  Google Scholar 

  79. Allard S, Kinzig M, Boivin G, Sorgel F, LeBel M (1993) Intravenous ciprofloxacin disposition in obesity. Clin Pharmacol Ther 54:368–373

    CAS  PubMed  Google Scholar 

  80. Carbon C (1990) Significance of tissue levels for prediction of antibiotic efficacy and determination of dosage. Eur J Clin Microbiol Infect Dis 9:510–516

    CAS  PubMed  Google Scholar 

  81. Nix DE, Goodwin SD, Peloquin CA, Rotella DL, Schentag JJ (1991) Antibiotic tissue penetration and its relevance: impact of tissue penetration on infection response. Antimicrob Agents Chemother 35:1953–1959

    CAS  PubMed  Google Scholar 

  82. Andes DR, Craig WA (1999) Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin North Am 13:595–618

    CAS  PubMed  Google Scholar 

  83. Lutsar I, Ahmed A, Friedland IR, Trujillo M, Wubbel L, Olsen K, McCracken GH Jr (1997) Pharmacodynamics and bactericidal activity of ceftriaxone therapy in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 41:2414–2417

    CAS  PubMed  Google Scholar 

  84. Tauber MG, Doroshow CA, Hackbarth CJ, Rusnak MG, Drake TA, Sande MA (1984) Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis 149:568–574

    CAS  PubMed  Google Scholar 

  85. Modai J, Vittecoq D, Decazes JM, Wolff M, Meulemans A (1983) Penetration of ceftazidime into cerebrospinal fluid of patients with bacterial meningitis. Antimicrob Agents Chemother 24:126–128

    CAS  PubMed  Google Scholar 

  86. Fong IW, Tomkins KB (1984) Penetration of ceftazidime into the cerebrospinal fluid of patients with and without evidence of meningeal inflammation. Antimicrob Agents Chemother 26:115–116

    CAS  PubMed  Google Scholar 

  87. Nau R, Prange HW, Kinzig M, Frank A, Dressel A, Scholz P, Kolenda H, Sorgel F (1996) Cerebrospinal fluid ceftazidime kinetics in patients with external ventriculostomies. Antimicrob Agents Chemother 40:763–766

    CAS  PubMed  Google Scholar 

  88. Rhoney DH, Tam VH, Parker D Jr, McKinnon PS, Coplin WM (2003) Disposition of cefepime in the central nervous system of patients with external ventricular drains. Pharmacotherapy 23:310–314

    CAS  PubMed  Google Scholar 

  89. Lipman J, Allworth A, Wallis SC (2000) Cerebrospinal fluid penetration of high doses of intravenous ciprofloxacin in meningitis. Clin Infect Dis 31:1131–1133

    CAS  PubMed  Google Scholar 

  90. Lutsar I, Friedland IR, Wubbel L, McCoig CC, Jafri HS, Ng W, Ghaffar F, McCracken GH Jr (1998) Pharmacodynamics of gatifloxacin in cerebrospinal fluid in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 42:2650–2655

    CAS  PubMed  Google Scholar 

  91. Baird P, Hughes S, Sullivan M, Willmot I (1978) Penetration into bone and tissues of clindamycin phosphate. Postgrad Med J 54:65–67

    CAS  Google Scholar 

  92. Mueller SC, Henkel KO, Neumann J, Hehl EM, Gundlach KK, Drewelow B (1999) Perioperative antibiotic prophylaxis in maxillofacial surgery: penetration of clindamycin into various tissues. J Craniomaxillofac Surg 27:172–176

    CAS  PubMed  Google Scholar 

  93. Graziani AL, Lawson LA, Gibson GA, Steinberg MA, MacGregor RR (1988) Vancomycin concentrations in infected and noninfected human bone. Antimicrob Agents Chemother 32:1320–1322

    CAS  PubMed  Google Scholar 

  94. Fong IW, Ledbetter WH, Vandenbroucke AC, Simbul M, Rahm V (1986) Ciprofloxacin concentrations in bone and muscle after oral dosing. Antimicrob Agents Chemother 29:405–408

    CAS  PubMed  Google Scholar 

  95. Mandell GL, Coleman E (2001) Uptake, transport, and delivery of antimicrobial agents by human polymorphonuclear neutrophils. Antimicrob Agents Chemother 45:1794–1798

    Article  CAS  PubMed  Google Scholar 

  96. Hand WL, Hand DL (2001) Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int J Antimicrob Agents 18:419–425

    Article  CAS  PubMed  Google Scholar 

  97. Acar JF (2000) Antibiotic synergy and antagonism. Med Clin North Am 84:1391–1406

    CAS  PubMed  Google Scholar 

  98. Burchall JJ (1977) Synergism between trimethoprim and sulfamethoxazole. Science 197:1300–1301

    CAS  Google Scholar 

  99. Cocito C, Di Giambattista M, Nyssen E, Vannuffel P (1997) Inhibition of protein synthesis by streptogramins and related antibiotics. J Antimicrob Chemother 39 (Suppl A):7–13

    Article  CAS  PubMed  Google Scholar 

  100. Lee NL, Yuen KY, Kumana CR (2001) Beta-lactam antibiotic and beta-lactamase inhibitor combinations. JAMA 285:386–388

    Article  CAS  PubMed  Google Scholar 

  101. Le T, Bayer AS (2003) Combination antibiotic therapy for infective endocarditis. Clin Infect Dis 36:615–621

    Article  PubMed  Google Scholar 

  102. Moellering RCJ, Wennersten C, Weinberg AN (1971) Synergy of penicillin and gentamicin against enterococci. J Infect Dis 124 (Suppl 124):207

    PubMed  Google Scholar 

  103. Gavalda J, Torres C, Tenorio C, Lopez P, Zaragoza M, Capdevila JA, Almirante B, Ruiz F, Borrell N, Gomis X, Pigrau C, Baquero F, Pahissa A (1999) Efficacy of ampicillin plus ceftriaxone in treatment of experimental endocarditis due to Enterococcus faecalis strains highly resistant to aminoglycosides. Antimicrob Agents Chemother 43:639–646

    CAS  PubMed  Google Scholar 

  104. Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR (1989) Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 87:540–546

    CAS  PubMed  Google Scholar 

  105. European Organization for the Research and Treatment of Cancer (1987) Ceftazidime combined with a short or long course of amikacin for empirical therapy of gram-negative bacteremia in cancer patients with granulocytopenia. The EORTC International Antimicrobial Therapy Cooperative Group. N Engl J Med 317:1692–1698

    PubMed  Google Scholar 

  106. Siegman-Igra Y, Ravona R, Primerman H, Giladi M (1998) Pseudomonas aeruginosa bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int J Infect Dis 2:211–215

    Article  CAS  PubMed  Google Scholar 

  107. Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G (2000) Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Arch Intern Med 160:501–509

    Article  CAS  PubMed  Google Scholar 

  108. Fish DN, Piscitelli SC, Danziger LH (1995) Development of resistance during antimicrobial therapy: a review of antibiotic classes and patient characteristics in 173 studies. Pharmacotherapy 15:279–291

    CAS  PubMed  Google Scholar 

  109. Rajagopalan S, Yoshikawa TT (2001) Antimicrobial therapy in the elderly. Med Clin North Am 85:133–147

    CAS  PubMed  Google Scholar 

  110. Anderson S, Brenner BM (1986) Effects of aging on the renal glomerulus. Am J Med 80:435–442

    CAS  PubMed  Google Scholar 

  111. Saxon A, Hassner A, Swabb EA, Wheeler B, Adkinson NFJ (1984) Lack of cross-reactivity between aztreonam, a monobactam antibiotic, and penicillin in penicillin-allergic subjects. J Infect Dis 149:16–22

    CAS  PubMed  Google Scholar 

  112. Shepherd GM (1991) Allergy to beta-lactam antibiotics. Immunol Allergy Clin North Am 11:611–633

    Google Scholar 

  113. Roujeau JC, Kelly JP, Naldi L, Rzany B, Stern RS, Anderson T, Auquier A, Bastuji-Garin S, Correia O, Locati F, et al (1995) Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N Engl J Med 333:1600–1607

    CAS  PubMed  Google Scholar 

  114. Dickinson BD, Altman RD, Nielsen NH, Sterling ML (2001) Drug interactions between oral contraceptives and antibiotics. Obstet Gynecol 98:853–860

    Article  CAS  PubMed  Google Scholar 

  115. Neuvonen PJ, Kivisto KT, Lehto P (1991) Interference of dairy products with the absorption of ciprofloxacin. Clin Pharmacol Ther 50:498–502

    CAS  PubMed  Google Scholar 

  116. De Ponti F, Poluzzi E, Vaccheri A, Bergman U, Bjerrum L, Ferguson J, Frenz KJ, McManus P, Schubert I, Selke G, Terzis-Vaslamatzis G, Montanaro N (2002) Non-antiarrhythmic drugs prolonging the QT interval: considerable use in seven countries. Br J Clin Pharmacol 54:171–177

    Article  PubMed  Google Scholar 

  117. Curtis LH, Ostbye T, Sendersky V, Hutchison S, Allen LaPointe NM, Al-Khatib SM, Usdin Yasuda S, Dans PE, Wright A, Califf RM, Woosley RL, Schulman KA (2003) Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am J Med 114:135–141

    Article  CAS  PubMed  Google Scholar 

  118. Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43:1003–1012

    CAS  PubMed  Google Scholar 

  119. Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH (1990) Nephrotoxicity of vancomycin alone and with an aminogylcoside. J Antimicrob Chemother 25:679–687

    CAS  PubMed  Google Scholar 

  120. Perazella MA, Mahnensmith RL (1996) Trimethoprim-sulfamethoxazole: hyperkalemia is an important complication regardless of dose. Clin Nephrol 46:187–192

    CAS  PubMed  Google Scholar 

  121. Laskin OL, Cederberg DM, Mills J, Eron LJ, Mildvan D, Spector SA (1987) Ganciclovir for the treatment and suppression of serious infections caused by cytomegalovirus. Am J Med 83:201–207

    CAS  PubMed  Google Scholar 

  122. Yunis AA (1989) Chloramphenicol toxicity: 25 years of research. Am J Med 87 (Suppl 3N):44–48

    Google Scholar 

  123. Kuter DJ, Tillotson GS (2001) Hematologic effects of antimicrobials: focus on the oxazolidinone linezolid. Pharmacotherapy 21:1010–1013

    CAS  PubMed  Google Scholar 

  124. Schacht J (1993) Biochemical basis of aminoglycoside ototoxicity. Otolaryngol Clin North Am 26:845–856

    CAS  PubMed  Google Scholar 

  125. McNeill L, Allen M, Estrada C, Cook P (2003) Pyrazinamide and rifampin vs. isoniazid for the treatment of latent tuberculosis: improved completion rates but more hepatotoxicity. Chest 123:102–106

    CAS  PubMed  Google Scholar 

  126. Maraqa NF, Gomez MM, Rathore MH, Alvarez AM (2002) Higher occurrence of hepatotoxicity and rash in patients treated with oxacillin, compared with those treated with nafcillin and other commonly used antimicrobials. Clin Infect Dis 34:50–54

    Article  CAS  PubMed  Google Scholar 

  127. Vassileva SG, Mateev G, Parish LC (1998) Antimicrobial photosensitive reactions. Arch Intern Med 158:1993–2000

    Article  CAS  PubMed  Google Scholar 

  128. Van der Leur JJ, Thunnissen PL, Clasener HA, Muller NF, Dofferhoff AS (1993) Effects of imipenem, cefotaxime and cotrimoxazole on aerobic microbial colonization of the digestive tract. Scand J Infect Dis 25:473–478

    PubMed  Google Scholar 

  129. Pagano L, Antinori A, Ammassari A, Mele L, Nosari A, Melillo L, Martino B, Sanguinetti M, Equitani F, Nobile F, Carotenuto M, Morra E, Morace G, Leone G (1999) Retrospective study of candidemia in patients with hematological malignancies. Clinical features, risk factors and outcome of 76 episodes. Eur J Haematol 63:77–85

    CAS  PubMed  Google Scholar 

  130. Bergogne-Berezin E (2000) Treatment and prevention of antibiotic associated diarrhea. Int J Antimicrob Agents 16:521–526

    Article  CAS  PubMed  Google Scholar 

  131. Schrag SJ, Pena C, Fernandez J, Sanchez J, Gomez V, Perez E, Feris JM, Besser RE (2001) Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA 286:49–56

    Article  CAS  PubMed  Google Scholar 

  132. Carmeli Y, Samore MH (2002) Antecedent treatment with different antibiotic agents as a risk factor for vancomycin-resistant Enterococcus. Emerg Infect Dis 8:802–807

    CAS  PubMed  Google Scholar 

  133. Thomas JK, Forrest A, Bhavnani SM, Hyatt JM, Cheng A, Ballow CH, Schentag JJ (1998) Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 42:521–527

    CAS  PubMed  Google Scholar 

  134. Drusano GL, Johnson DE, Rosen M, Standiford HC (1993) Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother 37:483–490

    CAS  PubMed  Google Scholar 

  135. Kashuba AD, Bertino JS Jr, Nafziger AN (1998) Dosing of aminoglycosides to rapidly attain pharmacodynamic goals and hasten therapeutic response by using individualized pharmacokinetic monitoring of patients with pneumonia caused by gram-negative organisms. Antimicrob Agents Chemother 42:1842–1844

    CAS  PubMed  Google Scholar 

  136. Gustafsson I, Lowdin E, Odenholt I, Cars O (2001) Pharmacokinetic and pharmacodynamic parameters for antimicrobial effects of cefotaxime and amoxicillin in an in vitro kinetic model. Antimicrob Agents Chemother 45:2436–2440

    Article  CAS  PubMed  Google Scholar 

  137. Craig WA (1995) Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 22:89–96

    Article  CAS  PubMed  Google Scholar 

  138. Garrelts JC, Jost G, Kowalsky SF, Krol GJ, Lettieri JT (1996) Ciprofloxacin pharmacokinetics in burn patients. Antimicrob Agents Chemother 40:1153–1156

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. McKinnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinnon, P.S., Davis, S.L. Pharmacokinetic and Pharmacodynamic Issues in the Treatment of Bacterial Infectious Diseases. Eur J Clin Microbiol Infect Dis 23, 271–288 (2004). https://doi.org/10.1007/s10096-004-1107-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-004-1107-7

Keywords

Navigation