Skip to main content
Log in

MicroRNA-22 targeting CBP protects against myocardial ischemia–reperfusion injury through anti-apoptosis in rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs are extensively involved in the pathogenesis of major cardiovascular diseases by suppressing target gene expression. Recent studies have reported that microRNA-22 (miR-22) may be implicated in ischemia–reperfusion (I/R) induced myocardial injury. However, the specific function of miR-22 in myocardial I/R injury is far from clear nowadays. The present study was designed to determine the role of miR-22 in myocardial I/R injury and investigate the underlying cardio-protective mechanism. The rat myocardial I/R injury model was induced by occluding the left anterior descending coronary artery for 30 min followed by 12 h reperfusion. As predicted, adenovirus-mediated miR-22 overexpression markedly reduced the release of creatine kinase and lactate dehydrogenase, infarct size and cardiomyocytes apoptosis. Moreover, CREB binding protein (CBP) as a potential miR-22 target by bioinformatics was significantly inhibited after miR-22 transfection. We also found that p53 acetylation activity, pro-apoptotic related genes Bax and p21 levels were all decreased associated with the down-regulation of CBP. In conclusion, our data demonstrate that miR-22 could inhibit apoptosis of cardiomyocytes through one of its targets, CBP. Thus, miR-22 may constitute a new therapeutic target for the prevention of myocardial I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135

    Article  CAS  PubMed  Google Scholar 

  2. Cokkinos DV, Pantos C (2007) Myocardial protection in man–from research concept to clinical practice. Heart Fail Rev 12(3–4):345–362

    Article  CAS  PubMed  Google Scholar 

  3. Yang J, Yang J, Ding JW, Chen LH, Wang YL, Li S, Wu H (2008) Sequential expression of TLR4 and its effects on the myocardium of rats with myocardial ischemia–reperfusion injury. Inflammation 31(5):304–312

    Article  CAS  PubMed  Google Scholar 

  4. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion–from mechanism to translation. Nat Med 17(11):1391–1401

    Article  CAS  PubMed  Google Scholar 

  5. Matsumura K, Jeremy RW, Schaper J, Becker LC (1998) Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 97(8):795–804

    Article  CAS  PubMed  Google Scholar 

  6. Elsässer A, Suzuki K, Schaper J (2000) Unresolved issues regarding the role of apoptosis in the pathogenesis of ischemic injury and heart failure. J Mol Cell Cardiol 32(5):711–724

    Article  PubMed  Google Scholar 

  7. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    Article  CAS  PubMed  Google Scholar 

  8. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  10. Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284(43):29514–29525

    Article  CAS  PubMed  Google Scholar 

  11. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O (2012) Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14(2):147–154

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Yang X (2012) The function of miRNA in cardiac hypertrophy. Cell Mol Life Sci 69(21):3561–3570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Luo X, Bai Y, Sun L, Song W, Xu C, Wang Z, Yang B (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122(23):2378–2387

    Article  CAS  PubMed  Google Scholar 

  14. Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119(17):2357–2366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    CAS  PubMed  Google Scholar 

  16. Ait-Si-Ali S, Ramirez S, Barre FX, Dkhissi F, Magnaghi-Jaulin L, Girault JA, Robin P, Knibiehler M, Pritchard LL, Ducommun B, Trouche D, Harel-Bellan A (1998) Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396(6707):184–186

    Article  CAS  PubMed  Google Scholar 

  17. McManus KJ, Hendzel MJ (2001) CBP, a transcriptional coactivator and acetyltransferase. Biochem Cell Biol 79(3):253–266

    Article  CAS  PubMed  Google Scholar 

  18. Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89(7):1175–1184

    Article  CAS  PubMed  Google Scholar 

  19. Chao J, Yin H, Yao YY, Shen B, Smith RS Jr, Chao L (2006) Novel role of kallistatin in protection against myocardial ischemia–reperfusion injury by preventing apoptosis and inflammation. Hum Gene Ther 17(12):1201–1213

    Article  CAS  PubMed  Google Scholar 

  20. Qin Y, Yu Y, Dong H, Bian X, Guo X, Dong S (2012) MicroRNA 21 inhibits left ventricular remodeling in the early phase of rat model with ischemia–reperfusion injury by suppressing cell apoptosis. Int J Med Sci 9(6):413–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G (2009) MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 50(3):377–387

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Ha T, Liu L, Zou J, Zhang X, Kalbfleisch J, Gao X, Williams D, Li C (2013) Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res 97(3):432–442

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Zhang X, Ren XP, Chen J, Liu H, Yang J, Medvedovic M, Hu Z, Fan GC (2010) MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 122(13):1308–1318

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ling B, Wang GX, Long G, Qiu JH, Hu ZL (2012) Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3. J Cancer Res Clin Oncol 138(8):1355–1361

    Article  CAS  PubMed  Google Scholar 

  25. Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R (2013) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS ONE 8(1):e54222. doi:10.1371/journal.pone.0054222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gurha P, Abreu-Goodger C, Wang T, Ramirez MO, Drumond AL, van Dongen S, Chen Y, Bartonicek N, Enright AJ, Lee B, Kelm RJ Jr, Reddy AK, Taffet GE, Bradley A, Wehrens XH, Entman ML, Rodriguez A (2012) Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 125(22):2751–2761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Huang Y, Zou Q, Wang SP, Tang SM, Zhang GZ, Shen XJ (2011) The discovery approaches and detection methods of microRNAs. Mol Biol Rep 38(6):4125–4135

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Jiang H, Chen SS, Chen J, Li WQ, Xu SK, Wang JC (2010) Lentivirus-mediated RNAi targeting CREB binding protein attenuates neointimal formation and promotes re-endothelialization in balloon injured rat carotid artery. Cell Physiol Biochem 26(3):441–448

    Article  CAS  PubMed  Google Scholar 

  29. Lin CL, Tseng HC, Chen RF, Chen WP, Su MJ, Fang KM, Wu ML (2011) Intracellular zinc release-activated ERK-dependent GSK-3β-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic-reperfusion injury. Cell Death Differ 18(10):1651–1663

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Feng Y, Qu S, Wei X, Zhu H, Luo Q, Liu M, Chen G, Xiao X (2011) Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 90(3):538–545

    Article  CAS  PubMed  Google Scholar 

  31. Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW (2012) Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol 227(4):1391–1398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant Nos. 81200088, 81201458) and the Natural Science Foundation of Yichang city, China (Grant No. A12301-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Additional information

Jian Yang and Lihua Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Chen, L., Yang, J. et al. MicroRNA-22 targeting CBP protects against myocardial ischemia–reperfusion injury through anti-apoptosis in rats. Mol Biol Rep 41, 555–561 (2014). https://doi.org/10.1007/s11033-013-2891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2891-x

Keywords

Navigation