Skip to main content
Log in

Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Nucleolin is a multifunctional protein whose expression often correlates with increased cellular proliferation. While the expression of nucleolin is often elevated in numerous cancers, its expression in normal human brain and in astrocytomas has not been previously reported. Using paraffin-embedded sections from normal adult autopsy specimens and glioma resection specimens, we demonstrate that nucleolin expression is limited in the normal human brain specifically to mature neurons, ependymal cells, and granular cells of the dentate gyrus. While astrocytes in the normal human brain do not express nucleolin at significant levels, glioblastoma cell lines and primary human astrocytoma cells exhibit considerable nucleolin expression. Reduction of nucleolin expression through siRNA-mediated knockdown in the U87MG glioblastoma cell line caused a dramatic decrease in cell proliferation and induced cell cycle arrest in vitro. Moreover, conditional siRNA knockdown of nucleolin expression in U87MG intracranial xenografts in nude mice caused dramatic reduction in tumor size. Taken together, these results implicate nucleolin in the regulation of human astrocytoma proliferation in vitro and tumorigenicity in vivo and suggest that nucleolin may represent a potential novel therapeutic target for astrocytomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ginisty H, Sicard H, Roger B, Bouvet P (1999) Structure and functions of nucleolin. J Cell Sci 112(Pt 6):761–772

    PubMed  CAS  Google Scholar 

  2. Tuteja R, Tuteja N (1998) Nucleolin: a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol 33(6):407–436. doi:10.1080/10409239891204260

    Article  PubMed  CAS  Google Scholar 

  3. Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. Faseb J 13(14):1911–1922

    PubMed  CAS  Google Scholar 

  4. Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56(3):379–390

    Article  PubMed  CAS  Google Scholar 

  5. Kleinman HK, Weeks BS, Cannon FB, Sweeney TM, Sephel GC, Clement B, Zain M, Olson MO, Jucker M, Burrous BA (1991) Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys 290(2):320–325

    Article  PubMed  CAS  Google Scholar 

  6. Shi H, Huang Y, Zhou H, Song X, Yuan S, Fu Y, Luo Y (2007) Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110(8):2899–2906. doi:10.1182/blood-2007-01-064428

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe T, Tsuge H, Imagawa T, Kise D, Hirano K, Beppu M, Takahashi A, Yamaguchi K, Fujiki H, Suganuma M (2010) Nucleolin as cell surface receptor for tumor necrosis factor-alpha inducing protein: a carcinogenic factor of Helicobacter pylori. J Cancer Res Clin Oncol 136(6):911–921. doi:10.1007/s00432-009-0733-y

    Article  PubMed  CAS  Google Scholar 

  8. Schneider HR, Issinger OG (1988) Nucleolin (C23), a physiological substrate for casein kinase II. Biochem Biophys Res Commun 156(3):1390–1397

    Article  PubMed  CAS  Google Scholar 

  9. Miranda GA, Chokler I, Aguilera RJ (1995) The murine nucleolin protein is an inducible DNA and ATP binding protein which is readily detected in nuclear extracts of lipopolysaccharide-treated splenocytes. Exp Cell Res 217(2):294–308. doi:10.1006/excr.1995.1090

    Article  PubMed  CAS  Google Scholar 

  10. Chen CM, Chiang SY, Yeh NH (1991) Increased stability of nucleolin in proliferating cells by inhibition of its self-cleaving activity. J Biol Chem 266(12):7754–7758

    PubMed  CAS  Google Scholar 

  11. Grinstein E, Du Y, Santourlidis S, Christ J, Uhrberg M, Wernet P (2007) Nucleolin regulates gene expression in CD34-positive hematopoietic cells. J Biol Chem 282(17):12439–12449. doi:10.1074/jbc.M608068200

    Article  PubMed  CAS  Google Scholar 

  12. Khurts S, Masutomi K, Delgermaa L, Arai K, Oishi N, Mizuno H, Hayashi N, Hahn WC, Murakami S (2004) Nucleolin interacts with telomerase. J Biol Chem 279(49):51508–51515. doi:10.1074/jbc.M407643200

    Article  PubMed  CAS  Google Scholar 

  13. Grinstein E, Shan Y, Karawajew L, Snijders PJ, Meijer CJ, Royer HD, Wernet P (2006) Cell cycle-controlled interaction of nucleolin with the retinoblastoma protein and cancerous cell transformation. J Biol Chem 281(31):22223–22235. doi:10.1074/jbc.M513335200

    Article  PubMed  CAS  Google Scholar 

  14. Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123(1):49–63. doi:10.1016/j.cell.2005.07.034

    Article  PubMed  CAS  Google Scholar 

  15. Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N, Jones D, Spicer EK, Fernandes DJ (2009) Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharmacol 76(5):984–991. doi:10.1124/mol.109.055947

    Article  PubMed  CAS  Google Scholar 

  16. Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86(3):151–164. doi:10.1016/j.yexmp.2009.01.004

    Article  PubMed  CAS  Google Scholar 

  17. Ridley L, Rahman R, Brundler MA, Ellison D, Lowe J, Robson K, Prebble E, Luckett I, Gilbertson RJ, Parkes S, Rand V, Coyle B, Grundy RG (2008) Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neuro Oncol 10(5):675–689. doi:10.1215/15228517-2008-036

    Article  PubMed  CAS  Google Scholar 

  18. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YE, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686

    Article  PubMed  CAS  Google Scholar 

  19. Orringer DA, Koo YE, Chen T, Kim G, Hah HJ, Xu H, Wang S, Keep R, Philbert MA, Kopelman R, Sagher O (2009) In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery 64(5):965–971. doi:10.1227/01.NEU.0000344150.81021.AA discussion 971–962

    Article  PubMed  Google Scholar 

  20. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  21. Goldhoff P, Warrington NM, Limbrick DD Jr, Hope A, Woerner BM, Jackson E, Perry A, Piwnica-Worms D, Rubin JB (2008) Targeted inhibition of cyclic AMP phosphodiesterase-4 promotes brain tumor regression. Clin Cancer Res 14(23):7717–7725. doi:10.1158/1078-0432.CCR-08-0827

    Article  PubMed  CAS  Google Scholar 

  22. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K, Kieran MW, Luster AD, Segal RA (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 100(23):13513–13518. doi:10.1073/pnas.2235846100

    Article  PubMed  CAS  Google Scholar 

  23. Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB (2007) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67(2):651–658. doi:10.1158/0008-5472.CAN-06-2762

    Article  PubMed  CAS  Google Scholar 

  24. Gross S, Piwnica-Worms D (2005) Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat Methods 2(8):607–614. doi:10.1038/nmeth779

    Article  PubMed  CAS  Google Scholar 

  25. Wang GP, Bushman FD (2006) A statistical method for comparing viral growth curves. J Virol Methods 135(1):118–123. doi:10.1016/j.jviromet.2006.02.008

    Article  PubMed  CAS  Google Scholar 

  26. Pontvianne F, Abou-Ellail M, Douet J, Comella P, Matia I, Chandrasekhara C, Debures A, Blevins T, Cooke R, Medina FJ, Tourmente S, Pikaard CS, Saez-Vasquez J (2010) Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet 6(11):e1001225. doi:10.1371/journal.pgen.1001225

    Article  PubMed  Google Scholar 

  27. Kibbey MC, Johnson B, Petryshyn R, Jucker M, Kleinman HK (1995) A 110-kD nuclear shuttling protein, nucleolin, binds to the neurite-promoting IKVAV site of laminin-1. J Neurosci Res 42(3):314–322. doi:10.1002/jnr.490420305

    Article  PubMed  CAS  Google Scholar 

  28. Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19(6):693–703. doi:10.1089/08977150260139084

    Article  PubMed  CAS  Google Scholar 

  29. Mourmouras V, Cevenini G, Cosci E, Epistolato MC, Biagioli M, Barbagli L, Luzi P, Mannucci S, Miracco C (2009) Nucleolin protein expression in cutaneous melanocytic lesions. J Cutan Pathol 36(6):637–646. doi:10.1111/j.1600-0560.2008.01126.x

    Article  PubMed  Google Scholar 

  30. Ugrinova I, Monier K, Ivaldi C, Thiry M, Storck S, Mongelard F, Bouvet P (2007) Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol 8:66. doi:10.1186/1471-2199-8-66

    Article  PubMed  Google Scholar 

  31. Ritchie C, Doran B, Shah K, Rowlinson-Busza G, Courtenay-Luck N, Jones D (2007) Combination of the aptamer AS1441 with paclitaxel or Ara-C produces synergistic inhibition of cancer cell growth. AACR

  32. Destouches D, El Khoury D, Hamma-Kourbali Y, Krust B, Albanese P, Katsoris P, Guichard G, Briand JP, Courty J, Hovanessian AG (2008) Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS ONE 3(6):e2518

    Article  PubMed  Google Scholar 

  33. Krust B, El Khoury D, Soundaramourty C, Nondier I, Hovanessian AG (2011) Suppression of tumorigenicity of rhabdoid tumor derived G401 cells by the multivalent HB-19 pseudopeptide that targets surface nucleolin. Biochimie 93(3):426–433. doi:10.1016/j.biochi.2010.10.015

    Article  PubMed  CAS  Google Scholar 

  34. Saxena A, Rorie CJ, Dimitrova D, Daniely Y, Borowiec JA (2006) Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene 25(55):7274–7288. doi:10.1038/sj.onc.1209714

    Article  PubMed  CAS  Google Scholar 

  35. Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109(7):3069–3075. doi:10.1182/blood-2006-08-043257

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Children’s Discovery Institute (MC-LI-2009-03R, JRL) and by P50 CA94056 (DPW).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Leonard.

Additional information

Precis: This work shows the importance of nucleolin in regulating glioma growth and suggests regulation of nucleolin may serve as a valuable therapeutic target in treatment of gliomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Joshi, N., Agarwal, A. et al. Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest. J Neurooncol 108, 59–67 (2012). https://doi.org/10.1007/s11060-012-0827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0827-2

Keywords

Navigation