Skip to main content
Log in

Thrombus Aspiration in Primary Angioplasty for ST-segment Elevation Myocardial Infarction

  • Cardiovascular Disease and Stroke (P Perrone-Filardi and S. Agewall, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Mechanical reperfusion with primary percutaneous coronary intervention in acute ST-segment-elevation myocardial infarction is superior to fibrinolysis in terms of short-term and long-term outcome, provided that it can be delivered on time and by an experienced team. Balloon angioplasty and stent implantation of an occluded epicardial vessel during ST-segment-elevation myocardial infarction can cause disruption of the frail thrombus containing lesions associated with suboptimal myocardial reperfusion and microcirculatory obstruction. Distal embolization of atherothrombotic material can be prevented by thrombus aspiration during primary angioplasty. Mechanical aspiration via end-hole large-lumen thrombectomy catheters has been shown to improve Thrombolysis in Myocardial Infarction (TIMI) flow and result in a more consistent early resolution of ST-segment elevation in multiple registries. More recently, a more sophisticated quantification of the myocardial damage has been applied using myocardial scintigraphy and magnetic resonance, with no difference between patients treated with thrombectomy and patients treated with conventional therapy. The expectations in terms of lasting mortality benefit raised by the first Dutch single-center randomized trial of thrombectomy versus predilation with plain old balloon angioplasty (Thrombus Aspiration During Percutaneous Coronary Intervention in Acute Myocardial Infarction, TAPAS) were not confirmed by a much larger Swedish trial (Thrombus Aspiration ST-Segment Elevation Myocardial Infarction, TASTE) showing no outcome changes. Although we are waiting for new trials to clarify these controversial results, thrombectomy is still used in selected patients with high thrombus load or with persistent occlusion of the infarct-related artery after wire passage. Here we review the various systems available and discuss their relative merits and the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fuster V, Badimon L, Cohen M, et al. Insights into the pathogenesis of acute ischemic syndromes. Circulation. 1988;77:1213–20.

    Article  CAS  PubMed  Google Scholar 

  2. De Feyter PJ, Ozaki Y, Baptista J, et al. Ischemia-related lesion characteristics in patients with stable or unstable angina. A study with intracoronary angioscopy and ultrasound. Circulation. 1995;92:1408–13.

    Article  PubMed  Google Scholar 

  3. Hussain KM, Gould L, Bharathan T, et al. Arteriographic morphology and intracoronary thrombus in patients with unstable angina, non-Q wave myocardial infarction and stable angina pectoris. Angiology. 1995;46:181–9.

    Article  CAS  PubMed  Google Scholar 

  4. White CJ, Ramee SR, Collins TJ, et al. Coronary thrombi increase PTCA risk. Angioscopy as a clinical tool. Circulation. 1996;93:253–8.

    Article  CAS  PubMed  Google Scholar 

  5. Mizuno K, Miyamoto A, Satomura K, et al. Angioscopic coronary macro morphology in patients with acute coronary disorders. Lancet. 1991;337:809–12.

    Article  CAS  PubMed  Google Scholar 

  6. Tabata H, Mizuno K, Arakawa K, et al. Angioscopic identification of coronary thrombus in patients with postinfarction angina. J Am Coll Cardiol. 1995;25:1282–5.

    Article  CAS  PubMed  Google Scholar 

  7. Gibson CM, de Lemos JA, Murphy SA, et al. Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarction: a TIMI 14 substudy. Circulation. 2001;103:2550–4.

    Article  CAS  PubMed  Google Scholar 

  8. Freeman MR, Williams AE, Chisholm RJ, et al. Intracoronary thrombus and complex morphology in unstable angina. Relation to timing of angiography and in-hospital cardiac events. Circulation. 1989;80:17–23.

    Article  CAS  PubMed  Google Scholar 

  9. Taeymans Y, Theroux P, Lesperance J, et al. Quantitative angiographic morphology of the coronary artery lesions at risk of thrombotic occlusion. Circulation. 1992;85:78–85.

    Article  CAS  PubMed  Google Scholar 

  10. Siqueira DA, Abizaid AA, de Ribamar CJ, et al. Late incomplete apposition after drug-eluting stent implantation: incidence and potential for adverse clinical outcomes. Eur Heart J. 2007;28:1304–9.

    Article  PubMed  Google Scholar 

  11. Cook, Cook S, Eshtehardi P, et al. Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation. Eur Heart J. 2012;33:1334–43.

    Article  PubMed  Google Scholar 

  12. Hong MK, Mintz GS, Lee CW, et al. Impact of late drug-eluting stent malapposition on 3-year clinical events. J Am Coll Cardiol. 2007;50:1515–56.

    Article  PubMed  Google Scholar 

  13. Guagliumi G, Sirbu V, Musumeci G, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5:12–20.

    Article  PubMed  Google Scholar 

  14. Mizuno K, Satomura K, Miyamoto A, et al. Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes. N Engl J Med. 1992;326:287–91.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao XQ, Theroux P, Snapinn SM, et al. Intracoronary thrombus and platelet glycoprotein IIb/IIIa receptor blockade with tirofiban in unstable angina or non-Q-wave myocardial infarction. Angiographic results from the PRISM-PLUS trial (Platelet Receptor Inhibition for Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms). Circulation. 1999;100:1609–15.

    Article  CAS  PubMed  Google Scholar 

  16. Di Mario C, Gorge G, Peters R, et al. Clinical application and image interpretation in intracoronary ultrasound. Eur Heart J. 1998;19:207–29.

    Article  PubMed  Google Scholar 

  17. Siegel RJ, Ariani M, Fishbein MC, et al. Histopathologic validation of angioscopy and intravascular ultrasound. Circulation. 1991;84:109–17.

    Article  CAS  PubMed  Google Scholar 

  18. Milosz J, Klingenberg R, Landmesser U. Intracoronary near-infrared spectroscopy (NIRS) imaging for detection of lipid content of coronary plaques: current experience and future perspectives. Curr Cardiovasc Imaging Rep. 2013;6:426–30.

    Article  Google Scholar 

  19. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  20. Kini AS, Baber U, Kovacic JC, Limaye A, Ali ZA, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy. The YELLOW trial (Reduction in Yellow Plaque by Aggressive Lipid-Lowering Therapy). J Am Coll Cardiol. 2013;62(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713–7.

    Article  PubMed  Google Scholar 

  22. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  23. Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Imola F, Mallus MT, Ramazzotti V, et al. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention. 2010;6:575–81.

    Article  PubMed  Google Scholar 

  25. Gutiérrez-Chico JL, Alegría-Barrero E, Teijeiro-Mestre R, et al. Optical coherence tomography: from research to practice. Eur Heart J Cardiovasc Imaging. 2012;13:370–84.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hata K, Whittaker P, Kloner RA, et al. Brief antecedent ischemia attenuates platelet-mediated thrombosis in damaged and stenotic canine coronary arteries: role of adenosine. Circulation. 1998;97:692–702.

    Article  CAS  PubMed  Google Scholar 

  27. Hori M, Inoue M, Kitakaze M, et al. Role of adenosine in hyperemic response of coronary blood flow in microembolization. Am J Physiol. 1986;250:509–18.

    Google Scholar 

  28. Cura FA, Roffi M, Pasca N, et al. ST-segment resolution 60 minutes after combination treatment of abciximab with reteplase or reteplase alone for acute myocardial infarction (30-day mortality results from the resolution of ST-segment after reperfusion therapy substudy). Am J Cardiol. 2004;94:859–63.

    Article  PubMed  Google Scholar 

  29. Shah PK, Cercek B, Lew AS, et al. Angiographic validation of bedside markers of reperfusion. J Am Coll Cardiol. 1993;21:55–61.

    Article  CAS  PubMed  Google Scholar 

  30. Gibson CM, Murphy SA, Rizzo MJ, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Circulation. 1999;99:1945–50.

    Article  CAS  PubMed  Google Scholar 

  31. Gibson CM, Cannon CP, Murphy SA, et al. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation. 2002;105:1909–13.

    Article  PubMed  Google Scholar 

  32. Montisci R, Chen L, Ruscazio M, et al. Non-invasive coronary flow reserve is correlated with microvascular integrity and myocardial viability after primary angioplasty in acute myocardial infarction. Heart. 2006;92:1113–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Shah A, Wagner GS, Granger CB, et al. Prognostic implications of TIMI flow grade in the infarct related artery compared with continuous 12-lead ST-segment resolution analysis. Reexamining the "gold standard" for myocardial reperfusion assessment. J Am Coll Cardiol. 2000;35:666–72.

    Article  CAS  PubMed  Google Scholar 

  34. Bodi V, Sanchis J, Lopez-Lereu MP, et al. Evolution of 5 cardiovascular magnetic resonance-derived viability indexes after reperfused myocardial infarction. Am Heart J. 2007;153:649–55.

    Article  PubMed  Google Scholar 

  35. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation. 1985;71:699–708.

    Article  CAS  PubMed  Google Scholar 

  36. Galiuto L, Garramone B, Burzotta F, et al. Thrombus aspiration reduces microvascular obstruction after primary coronary intervention: a myocardial contrast echocardiography substudy of the REMEDIA trial. J Am Coll Cardiol. 2006;48:1355–60.

    Article  PubMed  Google Scholar 

  37. Tarantini G, Razzolini R, Cacciavillani L, et al. Influence of transmurality, infarct size, and severe microvascular obstruction on left ventricular remodeling and function after primary coronary angioplasty. Am J Cardiol. 2006;98:1033–40.

    Article  PubMed  Google Scholar 

  38. Tan K, Sulke N, Taub N, et al. Clinical and lesion morphologic determinants of coronary angioplasty success and complications: current experience. J Am Coll Cardiol. 1995;25:855–65.

    Article  CAS  PubMed  Google Scholar 

  39. Rittersma SZ, van der Wal AC, Koch KT, et al. Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation. 2005;111:1160–5.

    Article  PubMed  Google Scholar 

  40. Hara H, Nakamura M, Komatsu H, et al. Comparison of the in vitro performance of 6 and 7 French aspiration catheters. EuroIntervention. 2007;2:487–92.

    PubMed  Google Scholar 

  41. Rioufol G, Collin B, Vincent-Martin M, et al. Large tube section is the key to successful coronary thrombus aspiration: findings of a standardized bench test. Catheter Cardiovasc Interv. 2006;67:254–7.

    Article  PubMed  Google Scholar 

  42. Constantinides S, Lo TS, Been M, et al. Early experience with a helical coronary thrombectomy device in patients with acute coronary thrombosis. Heart. 2002;87:455–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Young JJ, Cox DA, Stuckey T, et al. Prospective, multicenter study of thrombectomy in patients with acute myocardial infarction: the X-Tract AMI registry. J Interv Cardiol. 2007;20:44–50.

    Article  PubMed  Google Scholar 

  44. Lefevre T, Garcia E, Reimers B, et al. X-Sizer for thrombectomy in acute myocardial infarction improves ST-segment resolution: results of the X-Sizer in AMI for negligible embolization and optimal ST resolution (X AMINE ST) trial. J Am Coll Cardiol. 2005;46:246–52.

    Article  PubMed  Google Scholar 

  45. Stone GW, Cox DA, Babb J, et al. Prospective, randomized evaluation of thrombectomy prior to percutaneous intervention in diseased saphenous vein grafts and thrombus-containing coronary arteries. J Am Coll Cardiol. 2003;42:2007–13.

    Article  PubMed  Google Scholar 

  46. De Carlo M, Cortese B, Borelli G, et al. Successful treatment of acute myocardial infarction due to subocclusive thrombosis over a small atherosclerotic plaque with the "Rinspiration" device, a novel thrombectomy catheter. Int J Cardiol. 2007;115:95–6.

    Article  PubMed  Google Scholar 

  47. Webb J, Chandavimol M, Hamburger JN, et al. Initial experience with a novel coronary rinsing and thrombectomy system: "Rinspiration". J Invasive Cardiol. 2006;18:188–92.

    PubMed  Google Scholar 

  48. Webb JG, Vaderah S, Hamburger J, et al. Proximal protection during saphenous vein graft angioplasty: the Kerberos embolic protection system. Catheter Cardiovasc Interv. 2005;64:383–6.

    Article  PubMed  Google Scholar 

  49. Antoniucci D, Valenti R, Migliorini A, et al. Comparison of rheolytic thrombectomy before direct infarct artery stenting versus direct stenting alone in patients undergoing percutaneous coronary intervention for acute myocardial infarction. Am J Cardiol. 2004;93:1033–5.

    Article  PubMed  Google Scholar 

  50. Ali A, Cox D, Dib N, et al. Rheolytic thrombectomy with percutaneous coronary intervention for infarct size reduction in acute myocardial infarction: 30-day results from a multicenter randomized study. J Am Coll Cardiol. 2006;48:244–52.

    Article  PubMed  Google Scholar 

  51. Migliorini A, Stabile A, Rodriguez AE, et al. Comparison of AngioJet rheolytic thrombectomy before direct infarct artery stenting with direct stenting alone in patients with acute myocardial infarction. The JETSTENT trial. J Am Coll Cardiol. 2010;56:1298–306.

    Article  PubMed  Google Scholar 

  52. Topaz O, Ebersole D, Das T, et al. Excimer laser angioplasty in acute myocardial infarction (the CARMEL multicenter trial). Am J Cardiol. 2004;93:694–701.

    Article  PubMed  Google Scholar 

  53. Dorr M, Vogelgesang D, Hummel A, et al. Excimer laser thrombus elimination for prevention of distal embolization and no-reflow in patients with acute ST elevation myocardial infarction: results from the randomized LaserAMI study. Int J Cardiol. 2007;116:20–6.

    Article  PubMed  Google Scholar 

  54. Ambrosini V, Cioppa A, Salemme L, et al. Excimer laser in acute myocardial infarction: single centre experience on 66 patients. Int J Cardiol. 2008;127:98–102.

    Article  CAS  PubMed  Google Scholar 

  55. Latib A, Takagi K, Chizzola G, Tobis J, Ambrosini V, et al. Excimer laser lesion modification to expand non-dilatable stents: the ELLEMENT registry. Cardiovasc Revasc Med. 2014;15(1):8–12.

    Article  PubMed  Google Scholar 

  56. Pershad A, Sein V, Laufer N, et al. GuideLiner catheter facilitated PCI – a novel device with multiple applications. J Invasive Cardiol. 2011;23:254–9.

    Google Scholar 

  57. Stankovic G, Colombo A, Presbitero P, van den Branden F, Inglese L, Di Mario C, et al. Randomized evaluation of polytetrafluoroethylene-covered stent in saphenous vein grafts: the Randomized Evaluation of polytetrafluoroethylene COVERed stent in Saphenous vein grafts (RECOVERS) trial. Circulation. 2003;108(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  58. Tyczynski P, Kukreja N, van Geuns RJ, et al. Optical coherence tomography for the assessment of pericardium covered stents for the treatment of degenerated saphenous vein grafts. EuroIntervention. 2010;6:78–85.

    Article  PubMed  Google Scholar 

  59. Dziewierz A, Dudek D. Advantages of MGuard coronary stent system. Minerva Cardioangiol. 2012;60:33–40.

    CAS  PubMed  Google Scholar 

  60. Cassese S, Esposito G, Mauro C, et al. MGUard versus bAre-metal stents plus manual thRombectomy in ST-elevation myocarDial Infarction pAtieNts—(GUARDIAN) trial: study design and rationale. Catheter Cardiovasc Interv. 2012;79:1118–26.

    Article  PubMed  Google Scholar 

  61. Stone GW, Abizaid A, Silber S, Dizon JM, Merkely B, et al. Prospective, randomized, multicenter evaluation of a polyethylene terephthalate micronet mesh-covered stent (MGuard) in ST-segment elevation myocardial infarction: the MASTER trial. J Am Coll Cardiol. 2012;60:1975–84.

    Article  Google Scholar 

  62. Burzotta F, Trani C, Romagnoli E, et al. Manual thrombus-aspiration improves myocardial reperfusion: the Randomized Evaluation of the Effect of Mechanical Reduction of Distal Embolization by Thrombus-Aspiration in Primary and Rescue Angioplasty (REMEDIA) trial. J Am Coll Cardiol. 2005;46:371–6.

    Article  PubMed  Google Scholar 

  63. De Luca L, Sardella G, Davidson CJ, et al. Impact of intracoronary aspiration thrombectomy during primary angioplasty on left ventricular remodelling in patients with anterior ST elevation myocardial infarction. Heart. 2006;92:951–7.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Silva-Orrego P, Colombo P, Bigi R, et al. Thrombus aspiration before primary angioplasty improves myocardial reperfusion in acute myocardial infarction: the DEAR-MI (Dethrombosis to Enhance Acute Reperfusion in Myocardial Infarction) study. J Am Coll Cardiol. 2006;48:1552–9.

    Article  PubMed  Google Scholar 

  65. De Luca G, Suryapranata H, Stone G, et al. Adjunctive mechanical devices to prevent distal embolization in patients undergoing mechanical revascularization for acute myocardial infarction: a meta-analysis of randomized trials. Am Heart J. 2007;153:343–53.

    Article  PubMed  Google Scholar 

  66. Svilaas T, Vlaar PJ, van der Horst IC, et al. Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med. 2008;358:557–67.

    Article  CAS  PubMed  Google Scholar 

  67. Vlaar PJ, Svilaas T, van der Horst IC, et al. Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet. 2008;371:1915–20.

    Article  PubMed  Google Scholar 

  68. De Luca G, Dudek D, Sardella G, et al. Adjunctive manual thrombectomy improves myocardial perfusion and mortality in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction: a meta-analysis of randomized trials. Eur Heart J. 2008;29:3002–10.

    Article  PubMed  Google Scholar 

  69. Burzotta F, De Vita M, et al. Clinical impact of thrombectomy in acute ST-elevation myocardial infarction: an individual patient-data pooled analysis of 11 trials. Eur Heart J. 2009;30:2193–203.

    Article  PubMed  Google Scholar 

  70. Frobert O, Lagerqvist B, Gudnason T, et al. Thrombus Aspiration in ST-Elevation myocardial infarction in Scandinavia (TASTE trial). A multicenter, prospective, randomized, controlled clinical registry trial based on the Swedish Angiography and Angioplasty Registry (SCAAR) platform. Study design and rationale. Am Heart J. 2010;160:1042–8.

    Article  PubMed  Google Scholar 

  71. Muller-Hulsbeck S, Grimm J, Leidt J, et al. Comparison of in vitro effectiveness of mechanical thrombectomy devices. J Vasc Interv Radiol. 2001;12:1185–91.

    Article  CAS  PubMed  Google Scholar 

  72. Prati F, Uemura S, Souteyrand G, Virmani R, Motreff P, et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc Imaging. 2013;6(3):283–7.

    Article  PubMed  Google Scholar 

  73. Steg PG, James SK, Atar D, Badano LP, Blömstrom-Lundqvist C, Borger MA, et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Roberta Serdoz, Michele Pighi, Nikolaos V.Konstantinidis, Ismail Dogu Kilic, Sara Abou-Sherif, and Carlo Di Mario declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Serdoz.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdoz, R., Pighi, M., Konstantinidis, N.V. et al. Thrombus Aspiration in Primary Angioplasty for ST-segment Elevation Myocardial Infarction. Curr Atheroscler Rep 16, 431 (2014). https://doi.org/10.1007/s11883-014-0431-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0431-3

Keywords

Navigation