Skip to main content
Log in

The Genetics of Physical Activity

  • Cardiovascular Genomics (TL Assimes, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Physical activity (PA) is a well-established modifiable lifestyle determinant for multiple cardio-metabolic outcomes. While many psychosocial and environmental correlates of PA have been identified, current understanding of the genetic architecture that contributes to PA is still very limited, especially when compared to other phenotypes such as obesity and diabetes.

Recent Findings

This review systematically and comprehensively assesses available evidence from animal experiments, family studies, population-based candidate gene analyses, and genome-wide association studies (GWAS) studying the genetics of physical activity patterns. It discusses the scientific evolution in the field of PA genetics, including the recognition of increased sample sizes, the shift from early family-based approaches to association-based design, and the rapidly advancement of enabling genotyping and sequencing technologies. In addition, this review points to the gaps in the current knowledge base, including the general lack of GWAS and whole-genome sequence analyses particularly understudied populations, and the need for large-scale collaborative effort in both observational and experimental settings. In this review, we also call for research utilizing systems biology strategies for PA genetic research and accounting for complex gene-environment interactions that may vary by race/ethnicity.

Summary

The epidemic of physical inactivity has been a public health nemesis, encompassing a large burden of diseases and high societal costs. A better understanding of the genetic basis of PA can inform public health policies for the prevention, control, and treatment of many chronic diseases related to physical inactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. U.S. Department of Health and Human Services. Physical activity guidelines advisory committee report. Washington, DC: US Department of Health and Human Services; 2008. p. 2008.

    Google Scholar 

  2. Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(7):e002014.

  3. Ma X, Ran Y, Gong J, Chen D. Sequential accelerated solvent extraction of polycyclic aromatic hydrocarbons with different solvents: performance and implication. J Environ Qual. 2010;39(6):2072–9.

    Article  PubMed  Google Scholar 

  4. Ma PF, Xing H, Liao LJ, Chen B, Zhao QB, Quan Y, et al. Feasibility of using dried blood spots to detect HIV drug resistance genotyping. Zhonghua Yu Fang Yi Xue Za Zhi [Chinese J Prev Med]. 2010;44(11):993–8.

    CAS  Google Scholar 

  5. Carlson SA, Fulton JE, Pratt M, Yang Z, Adams EK. Inadequate physical activity and health care expenditures in the United States. Prog Cardiovasc Dis. 2015;57(4):315–23. https://doi.org/10.1016/j.pcad.2014.08.002.

    Article  PubMed  Google Scholar 

  6. Festing MF. Wheel activity in 26 strains of mouse. Lab Anim. 1977;11(4):257–8. https://doi.org/10.1258/002367777780936530.

    Article  CAS  PubMed  Google Scholar 

  7. Lerman I, Harrison BC, Freeman K, Hewett TE, Allen DL, Robbins J, et al. Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol (1985). 2002;92(6):2245–55. https://doi.org/10.1152/japplphysiol.01045.2001.

    Article  Google Scholar 

  8. Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR. Genetic influence on daily wheel running activity level. Physiol Genomics. 2004;19(3):270–6. https://doi.org/10.1152/physiolgenomics.00125.2004.

    Article  CAS  PubMed  Google Scholar 

  9. Knab AM, Bowen RS, Hamilton AT, Gulledge AA, Lightfoot JT. Altered dopaminergic profiles: implications for the regulation of voluntary physical activity. Behav Brain Res. 2009;204(1):147–52. https://doi.org/10.1016/j.bbr.2009.05.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fox DL, Vella KR, Good DJ. Energy balance pathways converging on the Nhlh2 transcription factor. Front Biosci. 2007;12:3983–93.

    Article  CAS  PubMed  Google Scholar 

  11. Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature. 2007;448(7157):1050–3. https://doi.org/10.1038/nature06067.

    Article  CAS  PubMed  Google Scholar 

  12. Good DJ, Li M, Deater-Deckard K. A genetic basis for motivated exercise. Exerc Sport Sci Rev. 2015;43(4):231–7. https://doi.org/10.1249/JES.0000000000000057.

    Article  PubMed  Google Scholar 

  13. Gomes FR, Rezende EL, Malisch JL, Lee SK, Rivas DA, Kelly SA, et al. Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running. J Exp Biol. 2009;212(Pt 2):238–48. https://doi.org/10.1242/jeb.025296.

    Article  CAS  PubMed  Google Scholar 

  14. Tsao TS, Li J, Chang KS, Stenbit AE, Galuska D, Anderson JE, et al. Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity. FASEB J. 2001;15(6):958–69.

    Article  CAS  PubMed  Google Scholar 

  15. • Roth SM, Thomis MA. Fundamental concepts in exercise genomics. Exercise Genomics. Berlin: Springer; 2011. p. 1–22. This reference provides a thorough and comprehensive review of exercise genomics.

    Book  Google Scholar 

  16. Perusse L, Tremblay A, Leblanc C, Bouchard C. Genetic and environmental influences on level of habitual physical activity and exercise participation. Am J Epidemiol. 1989;129(5):1012–22.

    Article  CAS  PubMed  Google Scholar 

  17. Simonen RL, Perusse L, Rankinen T, Rice T, Rao DC, Bouchard C. Familial aggregation of physical activity levels in the Quebec Family Study. Med Sci Sports Exerc. 2002;34(7):1137–42.

    Article  PubMed  Google Scholar 

  18. Sallis JF, Patterson TL, Buono MJ, Atkins CJ, Nader PR. Aggregation of physical activity habits in Mexican-American and Anglo families. J Behav Med. 1988;11(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  19. Choh AC, Demerath EW, Lee M, Williams KD, Towne B, Siervogel RM, et al. Genetic analysis of self-reported physical activity and adiposity: the Southwest Ohio Family Study. Public Health Nutr. 2009;12(8):1052–60. https://doi.org/10.1017/S1368980008003583.

    Article  PubMed  Google Scholar 

  20. Butte NF, Cai G, Cole SA, Comuzzie AG. Viva la Familia Study: genetic and environmental contributions to childhood obesity and its comorbidities in the Hispanic population. Am J Clin Nutr. 2006;84(3):646–54. quiz 73–4

    CAS  PubMed  Google Scholar 

  21. Moore LL, Lombardi DA, White MJ, Campbell JL, Oliveria SA, Ellison RC. Influence of parents’ physical activity levels on activity levels of young children. J Pediatr. 1991;118(2):215–9.

    Article  CAS  PubMed  Google Scholar 

  22. De Geus EJ, De Moor MH. Genes, exercise, and psychological factors. In: Genetic and molecular aspects of sport performance. Oxford: Blackwell Publishing; 2011. p. 294–305.

  23. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516–7.

    Article  CAS  PubMed  Google Scholar 

  24. Altmuller J, Palmer LJ, Fischer G, Scherb H, Wjst M. Genome-wide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet. 2001;69(5):936–50. https://doi.org/10.1086/324069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simonen RL, Rankinen T, Perusse L, Rice T, Rao DC, Chagnon Y, et al. Genome-wide linkage scan for physical activity levels in the Quebec Family Study. Med Sci Sports Exerc. 2003;35(8):1355–9. https://doi.org/10.1249/01.MSS.0000078937.22939.7E.

    Article  PubMed  Google Scholar 

  26. Cai G, Cole SA, Butte N, Bacino C, Diego V, Tan K, et al. A quantitative trait locus on chromosome 18q for physical activity and dietary intake in Hispanic children. Obesity (Silver Spring). 2006;14(9):1596–604. https://doi.org/10.1038/oby.2006.184.

    Article  CAS  Google Scholar 

  27. De Moor MH, Posthuma D, Hottenga JJ, Willemsen G, Boomsma DI, De Geus EJ. Genome-wide linkage scan for exercise participation in Dutch sibling pairs. Eur J Hum Genet. 2007;15(12):1252–9. https://doi.org/10.1038/sj.ejhg.5201907.

    Article  PubMed  Google Scholar 

  28. Stefan N, Vozarova B, Del Parigi A, Ossowski V, Thompson DB, Hanson RL, et al. The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int J Obes Relat Metab Disord. 2002;26(12):1629–32. https://doi.org/10.1038/sj.ijo.0802161.

    Article  CAS  PubMed  Google Scholar 

  29. Richert L, Chevalley T, Manen D, Bonjour JP, Rizzoli R, Ferrari S. Bone mass in prepubertal boys is associated with a Gln223Arg amino acid substitution in the leptin receptor. J Clin Endocrinol Metab. 2007;92(11):4380–6. https://doi.org/10.1210/jc.2007-0932.

    Article  CAS  PubMed  Google Scholar 

  30. •• De Moor MH, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, et al. Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc. 2009;41(10):1887–95. https://doi.org/10.1249/MSS.0b013e3181a2f646. This is the only GWAS for PA that has been published to date.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cole DE, Peltekova VD, Rubin LA, Hawker GA, Vieth R, Liew CC, et al. A986S polymorphism of the calcium-sensing receptor and circulating calcium concentrations. Lancet. 1999;353(9147):112–5.

    Article  CAS  PubMed  Google Scholar 

  32. Lorentzon M, Lorentzon R, Lerner UH, Nordstrom P. Calcium sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. Eur J Endocrinol. 2001;144(3):257–61.

    Article  CAS  PubMed  Google Scholar 

  33. Iida A, Simsek-Kiper PO, Mizumoto S, Hoshino T, Elcioglu N, Horemuzova E, et al. Clinical and radiographic features of the autosomal recessive form of brachyolmia caused by PAPSS2 mutations. Hum Mutat. 2013;34(10):1381–6. https://doi.org/10.1002/humu.22377.

    Article  CAS  PubMed  Google Scholar 

  34. Yerges-Armstrong LM, Chai S, O’Connell JR, Curran JE, Blangero J, Mitchell BD, et al. Gene expression differences between offspring of long-lived individuals and controls in candidate longevity regions: evidence for PAPSS2 as a longevity gene. J Gerontol A Biol Sci Med Sci. 2016;71(10):1295–9. https://doi.org/10.1093/gerona/glv212.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rico-Sanz J, Rankinen T, Rice T, Leon AS, Skinner JS, Wilmore JH, et al. Quantitative trait loci for maximal exercise capacity phenotypes and their responses to training in the HERITAGE Family Study. Physiol Genomics. 2004;16(2):256–60. https://doi.org/10.1152/physiolgenomics.00035.2003.

    Article  CAS  PubMed  Google Scholar 

  36. Simonen RL, Rankinen T, Perusse L, Leon AS, Skinner JS, Wilmore JH, et al. A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol Behav. 2003;78(4–5):751–7.

    Article  CAS  PubMed  Google Scholar 

  37. Brown NJ, Blais C Jr, Gandhi SK, Adam A. ACE insertion/deletion genotype affects bradykinin metabolism. J Cardiovasc Pharmacol. 1998;32(3):373–7.

    Article  CAS  PubMed  Google Scholar 

  38. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol (1985). 1999;87(4):1313–6.

    CAS  Google Scholar 

  39. Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer DS, et al. Elite endurance athletes and the ACE I allele—the role of genes in athletic performance. Hum Genet. 1998;103(1):48–50.

    Article  CAS  PubMed  Google Scholar 

  40. Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, et al. Human gene for physical performance. Nature. 1998;393(6682):221–2. https://doi.org/10.1038/30374.

    Article  CAS  PubMed  Google Scholar 

  41. Williams AG, Rayson MP, Jubb M, World M, Woods DR, Hayward M, et al. The ACE gene and muscle performance. Nature. 2000;403(6770):614. https://doi.org/10.1038/35001141.

    Article  CAS  PubMed  Google Scholar 

  42. Winnicki M, Accurso V, Hoffmann M, Pawlowski R, Dorigatti F, Santonastaso M, et al. Physical activity and angiotensin-converting enzyme gene polymorphism in mild hypertensives. Am J Med Genet A. 2004;125A(1):38–44. https://doi.org/10.1002/ajmg.a.20434.

    Article  PubMed  Google Scholar 

  43. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75. https://doi.org/10.1038/ng.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41(1):25–34. https://doi.org/10.1038/ng.287.

    Article  CAS  PubMed  Google Scholar 

  45. Berthoud HR, Morrison C. The brain, appetite, and obesity. Annu Rev Psychol. 2008;59:55–92. https://doi.org/10.1146/annurev.psych.59.103006.093551.

    Article  PubMed  Google Scholar 

  46. Loos RJ, Rankinen T, Tremblay A, Perusse L, Chagnon Y, Bouchard C. Melanocortin-4 receptor gene and physical activity in the Quebec Family Study. Int J Obes. 2005;29(4):420–8. https://doi.org/10.1038/sj.ijo.0802869.

    Article  CAS  Google Scholar 

  47. Kawai T, Morita K, Masuda K, Nishida K, Sekiyama A, Teshima-Kondo S, et al. Physical exercise-associated gene expression signatures in peripheral blood. Clin J Sport Med. 2007;17(5):375–83. https://doi.org/10.1097/JSM.0b013e31814c3e4f.

    Article  PubMed  Google Scholar 

  48. Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, et al. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. The journals of gerontology Series A. Biol Sci Med Sci. 2007;62(2):206–12.

    Google Scholar 

  49. MacArthur DG, North KN. ACTN3: a genetic influence on muscle function and athletic performance. Exerc Sport Sci Rev. 2007;35(1):30–4. https://doi.org/10.1097/JES.0b013e31802d8874.

    Article  PubMed  Google Scholar 

  50. Norman B, Esbjornsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol (1985). 2009;106(3):959–65. https://doi.org/10.1152/japplphysiol.91435.2008.

    Article  CAS  Google Scholar 

  51. Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol (1985). 2005;99(1):154–63. https://doi.org/10.1152/japplphysiol.01139.2004.

    Article  CAS  Google Scholar 

  52. Lightfoot JT. Sex hormones’ regulation of rodent physical activity: a review. Int J Biol Sci. 2008;4(3):126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lightfoot JT, Turner MJ, Pomp D, Kleeberger SR, Leamy LJ. Quantitative trait loci for physical activity traits in mice. Physiol Genomics. 2008;32(3):401–8. https://doi.org/10.1152/physiolgenomics.00241.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salmen T, Heikkinen AM, Mahonen A, Kroger H, Komulainen M, Pallonen H, et al. Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann Med. 2003;35(4):282–8.

    Article  PubMed  Google Scholar 

  55. Ott J, Kamatani Y, Lathrop M. Family-based designs for genome-wide association studies. Nat Rev Genet. 2011;12(7):465–74. https://doi.org/10.1038/nrg2989.

    Article  CAS  PubMed  Google Scholar 

  56. Chan KH, Huang YT, Meng Q, Wu C, Reiner A, Sobel EM, et al. Shared molecular pathways and gene networks for cardiovascular disease and type 2 diabetes mellitus in women across diverse ethnicities. Circ Cardiovasc Genet. 2014;7(6):911–9. https://doi.org/10.1161/CIRCGENETICS.114.000676.

    Article  CAS  PubMed  Google Scholar 

  57. Women’s Health Initiative. https://www.whi.org/. Accessed 26 Aug 2017.

  58. Framingham Heart Study. https://www.framinghamheartstudy.org/. Accessed 26 Aug 2017.

  59. Jackson Heart Study. https://www.jacksonheartstudy.org/. Accessed 26 Aug 2017.

  60. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7. https://doi.org/10.1038/nature18642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huppertz C, Bartels M, Groen-Blokhuis MM, Dolan CV, de Moor MH, Abdellaoui A, et al. The dopaminergic reward system and leisure time exercise behavior: a candidate allele study. Biomed Res Int. 2014;2014:591717. https://doi.org/10.1155/2014/591717.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Althoff T, Sosic R, Hicks JL, King AC, Delp SL, Leskovec J. Large-scale physical activity data reveal worldwide activity inequality. Nature. 2017;547(7663):336–9. https://doi.org/10.1038/nature23018.

    Article  CAS  PubMed  Google Scholar 

  64. McConnell MV, Shcherbina A, Pavlovic A, Homburger JR, Goldfeder RL, Waggot D, et al. Feasibility of obtaining measures of lifestyle from a smartphone app: the MyHeart Counts Cardiovascular Health Study. JAMA Cardiol. 2017;2(1):67–76. https://doi.org/10.1001/jamacardio.2016.4395.

    Article  PubMed  Google Scholar 

  65. NHLBI Trans-Omics for Prevision Medicine Whole Genome Sequencing Program (TOPMED). https://www.nhlbiwgs.org/. Accessed 26 Aug 2017.

  66. Molecular Transducers of Physical Activity in Humans Consortium (MoTrPAC). https://commonfund.nih.gov/moleculartransducers/overview. Accessed 26 Aug 2017.

Download references

Funding

SL has received support from the American Heart Association (AHA CVGPS Pathway Grant), the National Institute of Health (NIH; R01 DK103699-01A1), and the US Department of Human Services (HHSN268201100003). JEM has received support from the NIH (R01 HL34594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simin Liu.

Ethics declarations

Conflict of Interest

Xiaochen Lin, Charles B. Eaton, JoAnn E. Manson, and Simin Liu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Eaton, C.B., Manson, J.E. et al. The Genetics of Physical Activity. Curr Cardiol Rep 19, 119 (2017). https://doi.org/10.1007/s11886-017-0938-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0938-7

Keywords

Navigation