Skip to main content
Log in

Comparative analysis of fecal microflora of healthy full-term Indian infants born with different methods of delivery (vaginal vs cesarean): Acinetobacter sp. prevalence in vaginally born infants

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In this study fecal microflora of human infants born through vaginal delivery (VB) and through cesarean section (CB) were investigated using culture-independent 16S rDNA cloning and sequencing approach. The results obtained clearly revealed that fecal microbiota of VB infants distinctly differ from those in their counterpart CB infants. The intestinal microbiota of infants delivered by cesarean section appears to be more diverse, in terms of bacteria species, than the microbiota of vaginally delivered infants. The most abundant bacterial species present in VB infants were Acinetobacter sp., Bifidobacterium sp. and Staphylococcus sp. However, CB infant’s fecal microbiota was dominated with Citrobacter sp., Escherichia coli and Clostridium difficile. The intestinal microbiota of cesarean section delivered infants in this study was also characterized by an absence of Bifidobacteria species. An interesting finding of our study was recovery of large number of Acinetobacter sp. consisting of Acinetobacter pittii (former Acinetobacter genomic species 3), Acinetobacter junii and Acinetobacter baumannii in the VB infants clone library. Among these, Acinetobacter baumannii is a known nosocomial pathogen and Acinetobacter pittii (genomic species 3) is recently recognized as clinically important taxa within the Acinetobacter calcoaceticusAcinetobacter baumannii (ACB) complex. Although none of the infants had shown any sign of clinical symptoms of disease, this observation warrants a closer look.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CB:

Cesarean section born breastfed

VB:

vaginally born breastfed

References

  • Ashelford KE 2006 New screening software shows that most recent large 16S r RNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72 5734–5741

    Article  PubMed  CAS  Google Scholar 

  • Benno Y and Mitsuoka T 1986 Development of intestinal microflora in humans and animals. Bifidobacteria Microflora 5 13–25

    Google Scholar 

  • Biasucci G, Benenati B, Morelli L, Bessi E and Boehm G 2008 Cesarean delivery may affect the early biodiversity of intestinal bacteria. J. Nutr. 138 1796S–1800S

    PubMed  CAS  Google Scholar 

  • Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E and Retetangos C 2010 Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86 13–15

    Article  PubMed  Google Scholar 

  • Chao A 1987 Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43 783–791

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG and Thompson JD 2003 Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31 3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Dijkshoorn L, Aken EV, Shunburne L, Reijden TJ, Bernards AT, Nemec A and Towner KJ 2005 Prevalence of Acinetobacter baumannii and other Acinetobacter sp. in faecal samples from non-hospitalized individuals. Clin. Microbiol. Infect. 11 329–332

    Article  PubMed  CAS  Google Scholar 

  • Favier CF, Vaughan EE, DeVos WM and Akkermans AD 2002 Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68 219–226

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J 1989 PHYLIP – Phylogeny Inference Package (version 3.2). Cladistics 5 164–166

    Google Scholar 

  • Finegold SM, Sutter VL and Mathisen GE 1983 Normal indigenous intestinal flora; in Human intestinal microflora in health and disease (ed) DJ Hentges (New York: Academic Press) pp 3–31

    Chapter  Google Scholar 

  • Gewolb IH, Schwalbe RS, Taciak VL, Harrison TS and Panigrahi P 1999 Stool microflora in extremely low birth weight infants. Arch. Dis. Child. Fetal Neonatal Ed. 80 F167–F173

    Article  PubMed  CAS  Google Scholar 

  • Good IJ 1953 The population frequencies of species and the estimation of population parameters. Biometrika 40 237–264

    Google Scholar 

  • Gronlund MM, Lehtonen OP, Eerola E and Kero P 1999 Fecal micro flora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediat. Gasteroenterol. Nutr. 28 19–25

    Article  CAS  Google Scholar 

  • Gronlund MM, Arvilommi H, Kero P, Lehtonen OP and Isolauri E 2000 Importance of intestinal colonization in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0 – 6 months. Arch. Dis. Child. 83 F186– F192

    CAS  Google Scholar 

  • Huelsenbeck JP and Ronquist F 2001 MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 754–755

    Article  PubMed  CAS  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH and Bohannan BJ 2001 Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67 4399–4406

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K and Nei M 2004 MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinformatics 5 150–163

    Article  PubMed  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H,Won S and Chun J 2012 Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62 716–721

    Article  PubMed  CAS  Google Scholar 

  • Krebs CJ 1998 Ecological methodology 2nd edition (Menlo Park, CA: Benjamin/Cummings)

    Google Scholar 

  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M and Moller K 2002 The culture independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68 673–690

    Article  PubMed  CAS  Google Scholar 

  • Mackie RI, Sghir A and Gaskins HR 1999 Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69 1035S–1045S

    PubMed  CAS  Google Scholar 

  • Magurran AE 1996 Ecological diversity and its measurement (London: Chapman and Hall)

    Google Scholar 

  • Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, Vaneechoutte M, Brisse S and Dijkshoorn L 2011 Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU. Res. Microbiol. 162 393–404

    Article  PubMed  CAS  Google Scholar 

  • Page RD 1996 TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12 357–358

    PubMed  CAS  Google Scholar 

  • Palmer C, Bik EM, Relman DA and Brown PO 2007 Development of the human infant intestinal microbiota. PLoS Biol. 5 1556–1573

    Article  CAS  Google Scholar 

  • Pandey PK, Siddharth J, Verma P, Bavdekar A, Patole MS and Shouche YS 2012 Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers. J. Biosci. 37 221–226

    Article  PubMed  Google Scholar 

  • Park HK, Shim SS, Kim SY, Park JH, Park SE, Kim HJ, Kang BC and Kim CM 2005 Molecular analysis of colonized bacteria in a human newborn infant gut. J. Microbiol. 43 354–353

    Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA and Stobberingh EE 2006 Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118 511–521

    Article  PubMed  Google Scholar 

  • Saarela M, Lahteenmaki L, Crittenden R, Salminen S and Sandholm MT 2002 Gut bacteria and health foods. Int. J. Food Microbiol. 78 99–117

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD and Handlesman J 2005 Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71 1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schwiertz A, Gruhl B, Löbnitz M, Michel P, Radke M and Blaut M 2003 Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast fed, full term infants. Pediat. Res. 54 393–399

    Article  PubMed  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun S and Whitman WB 2001 Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol. 67 4374–4376

    Article  PubMed  CAS  Google Scholar 

  • Songjinda P, Nakayama J, Kuroki Y, Tanaka S, Fukuda S, Kiyohara C, Yamamoto T, Izuchi K, Shirakawa T and Sonomoto K 2005 Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japanese infants. Biosci. Biotechnol. Biochem. 69 638–641

    Article  PubMed  CAS  Google Scholar 

  • Suau A, Bonnet R and Sutren M 1999 Direct analysis of genes encoding 16SrRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65 4799–4807

    PubMed  CAS  Google Scholar 

  • Swofford DL 2001 In PAUP: Phylogenetic analysis using parsimony (and other methods), Version 4.0b8 (Massachusetts: Sinauer Associates)

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA and Lane DJ 1991 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 697–703

    PubMed  CAS  Google Scholar 

  • Xia X and Xie Z 2001 DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92 371–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Ashish Bawdekar and the staff of his hospital for their cooperation in this study.We also thanks all the families who provided the fecal samples for this study. The study was supported by Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh S Shouche.

Additional information

MS received 23 March 2012; accepted 27 August 2012

Corresponding editor: Anand Kumar Bachhawat

[Pandey PK, Verma P, Kumar H, Bavdekar A, Patole MS and Shouche YS 2012 Comparative analysis of fecal microflora of healthy full-term Indian infants born with different methods of delivery (vaginal vs cesarean): Acinetobacter sp. prevalence in vaginally born infants. J. Biosci. 37 1–10] DOI 10.1007/s12038-012-9268-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, P.K., Verma, P., Kumar, H. et al. Comparative analysis of fecal microflora of healthy full-term Indian infants born with different methods of delivery (vaginal vs cesarean): Acinetobacter sp. prevalence in vaginally born infants. J Biosci 37 (Suppl 1), 989–998 (2012). https://doi.org/10.1007/s12038-012-9268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9268-5

Keywords

Navigation