Skip to main content
Log in

The Cerebellum and Cognition: Evidence from Functional Imaging Studies

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual–spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of “cognitive” networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition—as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks—remains a challenge for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holmes G. Brain. The cerebellum of man. 1939;62:1–30.

    Google Scholar 

  2. Snider R, Eldred E. Electro-anatomical studies on cerebro-cerebellar connections in the cat. J Comp Neurol. 1951;95:1–16.

    PubMed  CAS  Google Scholar 

  3. Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 31–60.

    Google Scholar 

  4. Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.

    PubMed  Google Scholar 

  5. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    PubMed  CAS  Google Scholar 

  6. Wolpert D, Miall R, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.

    PubMed  CAS  Google Scholar 

  7. Ito M. Cerebellum and neural control. New York: Raven; 1984.

    Google Scholar 

  8. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    PubMed  Google Scholar 

  9. Middleton F, Strick P. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31:236–50.

    PubMed  CAS  Google Scholar 

  10. Kelly R, Strick P. Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci. 2003;23:8432–44.

    PubMed  CAS  Google Scholar 

  11. Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

    PubMed  CAS  Google Scholar 

  12. Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.

    PubMed  CAS  Google Scholar 

  13. Schmahmann JD. Cerebellum and spinal cord: principles of development, anatomical organization, and functional relevance. In: Brice A, Pulst S, editors. Spinocerebellar degenerations: the ataxias and spastic paraplegias. New York: Elsevier; 2006. p. 1–60.

    Google Scholar 

  14. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    PubMed  CAS  Google Scholar 

  15. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    PubMed  Google Scholar 

  16. Whiting BA, Barton RA. The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J Hum Evol. 2003;44:3–10.

    PubMed  CAS  Google Scholar 

  17. Ramnani N, Behrens T, Johansen-Berg H, Richter M, Pinsk M, Andersson J, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.

    PubMed  Google Scholar 

  18. Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.

    PubMed  CAS  Google Scholar 

  19. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    PubMed  CAS  Google Scholar 

  20. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    PubMed  Google Scholar 

  21. O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    PubMed  Google Scholar 

  22. Heath R, Franklin D, Shraberg D. Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis. 1979;167:585–92.

    PubMed  CAS  Google Scholar 

  23. Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M. Cognitive planning deficit in patients with cerebellar atrophy. Neurology. 1992;42:1493–6.

    PubMed  CAS  Google Scholar 

  24. Botez-Marquard T, Leveille J, Botez M. Neuropsychological functioning in unilateral cerebellar damage. Can J Neurol Sci. 1994;21:353–7.

    PubMed  CAS  Google Scholar 

  25. Levisohn L, Cronin-Golomb A, Schmahmann J. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    PubMed  Google Scholar 

  26. Rapoport M, Reekum Rv, Mayberg H. The role of the cerebellum in cognition and behaviour: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12:193–8.

    PubMed  CAS  Google Scholar 

  27. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.

    PubMed  Google Scholar 

  28. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad K-O, Luthy AR, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126:1998–2008.

    PubMed  Google Scholar 

  29. Molinari M, Petrosini L, Misciagna S, Leggio M. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.

    PubMed  CAS  Google Scholar 

  30. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.

    PubMed  Google Scholar 

  31. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.

    PubMed  CAS  Google Scholar 

  32. Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.

    PubMed  CAS  Google Scholar 

  33. Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.

    PubMed  Google Scholar 

  34. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn H. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1124–31.

    Google Scholar 

  35. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.

    PubMed  Google Scholar 

  36. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43:685–91.

    PubMed  CAS  Google Scholar 

  37. Gross-Tsur V, Ben-Bashat D, Shalev RS, Levav M, Sira LB. Evidence of a developmental cerebello-cerebral disorder. Neuropsychologia. 2006;44:2569–72.

    PubMed  Google Scholar 

  38. Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol. 2006;13:161–70.

    PubMed  CAS  Google Scholar 

  39. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.

    PubMed  Google Scholar 

  40. Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci. 2004;5:241–9.

    PubMed  CAS  Google Scholar 

  41. Bushara K, Wheat J, Khan A, Mock B, Turski P, Sorenson J, et al. Multiple tactile maps in the human cerebellum. Neuroreport. 2001;12:2483–6.

    PubMed  CAS  Google Scholar 

  42. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13:55–73.

    PubMed  CAS  Google Scholar 

  43. Grodd W, Hulsmann E, Ackermann H. Functional MRI localizing in the cerebellum. Neurosurg Clin N Am. 2005;16:77–99.

    PubMed  Google Scholar 

  44. Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.

    PubMed  CAS  Google Scholar 

  45. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002;16:765–80.

    PubMed  Google Scholar 

  46. Laird A, Fox M, Price C, Glahn D, Uecker A, Lancaster J, et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp. 2005;25:155–64.

    PubMed  Google Scholar 

  47. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    PubMed  Google Scholar 

  48. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.

    PubMed  CAS  Google Scholar 

  49. Ojemann JG, Buckner RL, Akbudak E, Snyder AZ, Ollinger JM, McKinstry RC, et al. Functional MRI studies of word-stem completion: reliability across laboratories and comparison to blood flow imaging with PET. Hum Brain Mapp. 1998;6:203–15.

    PubMed  CAS  Google Scholar 

  50. Schlosser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry. 1998;64:492–8.

    PubMed  CAS  Google Scholar 

  51. Lurito JT, Kareken DA, Lowe MJ, Chen SH, Mathews VP. Comparison of rhyming and word generation with FMRI. Hum Brain Mapp. 2000;10:99–106.

    PubMed  CAS  Google Scholar 

  52. Seger CA, Desmond JE, Glover GH, Gabrieli JD. Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing unusual semantic relationships. Neuropsychology. 2000;14:361–9.

    PubMed  CAS  Google Scholar 

  53. Gurd JM, Amunts K, Weiss PH, Zafiris O, Zilles K, Marshall JC, et al. Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain. 2002;125:1024–38.

    PubMed  Google Scholar 

  54. Noppeney U, Price CJ. A PET study of stimulus- and task-induced semantic processing. Neuroimage. 2002;15:927–35.

    PubMed  CAS  Google Scholar 

  55. McDermott KB, Petersen SE, Watson JM, Ojemann JG. A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia. 2003;41:293–303.

    PubMed  Google Scholar 

  56. Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X, et al. Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp. 2003;18:208–14.

    PubMed  Google Scholar 

  57. Seki A, Okada T, Koeda T, Sadato N. Phonemic manipulation in Japanese: an fMRI study. Brain Res Cogn Brain Res. 2004;20:261–72.

    PubMed  Google Scholar 

  58. Tieleman A, Seurinck R, Deblaere K, Vandemaele P, Vingerhoets G, Achten E. Stimulus pacing affects the activation of the medial temporal lobe during a semantic classification task: an fMRI study. Neuroimage. 2005;26:565–72.

    PubMed  Google Scholar 

  59. Frings M, Dimitrova A, Schorn C, Elles H-G, Hein-Kropp C, Gizewski E, et al. Cerebellar involvement in verb generation: an fMRI study. Neurosci Lett. 2006;409:19–23.

    PubMed  CAS  Google Scholar 

  60. Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.

    PubMed  Google Scholar 

  61. Raichle M, Fiez J, Videen T, MacLeod A, Pardo J, Fox P, et al. Practice-related changes in human functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.

    PubMed  CAS  Google Scholar 

  62. Fiez J, Raichle M. Linguistic processing. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 233–54.

    Google Scholar 

  63. Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239:223–7.

    PubMed  CAS  Google Scholar 

  64. Jansen A, Floel A, Randenborgh JV, Konrad C, Rotte M, Forster A-F, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24:165–72.

    PubMed  Google Scholar 

  65. Hubrich-Ungureanu P, Kaemmerer N, Henn F, Braus D. Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett. 2002;319:91–4.

    PubMed  CAS  Google Scholar 

  66. Booth J, Wood L, Lu D, Houk J, Bitan T. The role of the basal ganglia and cerebellum in language processing. Brain Res. 2007;1133:136–44.

    PubMed  CAS  Google Scholar 

  67. Carreiras M, Mechelli A, Estevez A, Price CJ. Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci. 2007;19:433–44.

    PubMed  Google Scholar 

  68. Hagoort P, Indefrey P, Brown C, Herzog H, Steinmetz H, Seitz RJ. The neural circuitry involved in the reading of German words and pseudowords: a PET study. J Cogn Neurosci. 1999;11:383–98.

    PubMed  CAS  Google Scholar 

  69. Tan LH, Spinks JA, Gao JH, Liu HL, Perfetti CA, Xiong J, et al. Brain activation in the processing of Chinese characters and words: a functional MRI study. Hum Brain Mapp. 2000;10:16–27.

    PubMed  CAS  Google Scholar 

  70. Xu B, Grafman J, Gaillard WD, Ishii K, Vega-Bermudez F, Pietrini P, et al. Conjoint and extended neural networks for the computation of speech codes: the neural basis of selective impairment in reading words and pseudowords. Cereb Cortex. 2001;11:267–77.

    PubMed  CAS  Google Scholar 

  71. Mechelli A, Gorno-Tempini ML, Price CJ. Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J Cogn Neurosci. 2003;15:260–71.

    PubMed  Google Scholar 

  72. Joubert S, Beauregard M, Walter N, Bourgouin P, Beaudoin G, Leroux JM, et al. Neural correlates of lexical and sublexical processes in reading. Brain Lang. 2004;89:9–20.

    PubMed  Google Scholar 

  73. Stowe LA, Paans AM, Wijers AA, Zwarts F. Activations of "motor" and other non-language structures during sentence comprehension. Brain Lang. 2004;89:290–9.

    PubMed  Google Scholar 

  74. Richards TL, Aylward EH, Field KM, Grimme AC, Raskind W, Richards AL, et al. Converging evidence for triple word form theory in children with dyslexia. Dev Neuropsychol. 2006;30:547–89.

    PubMed  Google Scholar 

  75. Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibanez V, Hallett M. Neural networks for Braille reading by the blind. Brain. 1998;121:1213–29.

    PubMed  Google Scholar 

  76. Gizewski ER, Timmann D, Forsting M. Specific cerebellar activation during Braille reading in blind subjects. Hum Brain Mapp. 2004;22:229–35.

    PubMed  Google Scholar 

  77. Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17:1476–85.

    PubMed  Google Scholar 

  78. Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.

    PubMed  Google Scholar 

  79. Peeva MG, Guenther FH, Tourville JA, Nieto-Castanon A, Anton JL, Nazarian B, et al. Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage. 2010;50:626–38.

    PubMed  Google Scholar 

  80. Chen S, Desmond J. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.

    PubMed  Google Scholar 

  81. Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.

    PubMed  CAS  Google Scholar 

  82. Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.

    PubMed  Google Scholar 

  83. Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. Neuroimage. 2006;32:821–41.

    PubMed  Google Scholar 

  84. Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, et al. Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology. 2000;54:1324–31.

    PubMed  CAS  Google Scholar 

  85. Bonda E, Petrides M, Frey S, Evans A. Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci U S A. 1995;92:11180–4.

    PubMed  CAS  Google Scholar 

  86. Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, et al. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature. 1995;375:54–8.

    PubMed  CAS  Google Scholar 

  87. Zacks JM, Ollinger JM, Sheridan MA, Tversky B. A parametric study of mental spatial transformations of bodies. Neuroimage. 2002;16:857–72.

    PubMed  Google Scholar 

  88. Creem-Regehr SH, Neil JA, Yeh HJ. Neural correlates of two imagined egocentric transformations. Neuroimage. 2007;35:916–27.

    PubMed  Google Scholar 

  89. Weiss MM, Wolbers T, Peller M, Witt K, Marshall L, Buchel C, et al. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation. Neuroimage. 2009;44:1063–73.

    PubMed  Google Scholar 

  90. Lee TM, Liu HL, Hung KN, Pu J, Ng YB, Mak AK, et al. The cerebellum's involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. Neuropsychologia. 2005;43:1870–7.

    PubMed  Google Scholar 

  91. Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H. Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett. 2002;322:182–6.

    PubMed  CAS  Google Scholar 

  92. Jordan K, Heinze H-J, Lutz K, Kanowski M, Jancke L. Cortical activations during the mental rotation of different visual objects. NeuroImage. 2001;13:143–52.

    PubMed  CAS  Google Scholar 

  93. Vingerhoets G, Lange Fd, Vandemaele P, Deblaere K, Achten E. Motor imagery in mental rotation: an fMRI study. NeuroImage. 2002;17:1623–33.

    PubMed  Google Scholar 

  94. Neuner I, Stocker T, Kellermann T, Kircher T, Zilles K, Schneider F, et al. Wechsler memory scale revised edition: neural correlates of the visual paired associates subtest adapted for fMRI. Brain Res. 2007;1177:66–78.

    PubMed  CAS  Google Scholar 

  95. Molinari M, Leggio M. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6:214–20.

    PubMed  Google Scholar 

  96. Glickstein M, May 3rd JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235:343–59.

    PubMed  CAS  Google Scholar 

  97. Stein J, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.

    PubMed  CAS  Google Scholar 

  98. Hanakawa T, Honda M, Okada T, Fukuyama H, Shibasaki H. Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: a functional magnetic resonance imaging study. Neurosci Lett. 2003;347:199–201.

    PubMed  CAS  Google Scholar 

  99. Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. 2008;18:2775–88.

    PubMed  Google Scholar 

  100. Seidler RD, Noll DC, Chintalapati P. Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res. 2006;175:544–55.

    PubMed  CAS  Google Scholar 

  101. Fiez J, Raife E, Balota D, Schwarz J, Raichle M, Petersen S. A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci. 1996;16:808–22.

    PubMed  CAS  Google Scholar 

  102. Desmond J, Gabrieli J, Wagner A, Ginier B, Glover G. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.

    PubMed  CAS  Google Scholar 

  103. LaBar KS, Gitelman DR, Parrish TB, Mesulam M. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage. 1999;10:695–704.

    PubMed  CAS  Google Scholar 

  104. Honey G, Bullmore E, Sharma T. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage. 2000;12:495–503.

    PubMed  CAS  Google Scholar 

  105. Chen S, Desmond J. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage. 2005;24:332–8.

    PubMed  Google Scholar 

  106. Beneventi H, Barndon R, Ersland L, Hugdahl K. An fMRI study of working memory for schematic facial expressions. Scand J Psychol. 2007;48:81–6.

    PubMed  Google Scholar 

  107. Hautzel H, Mottaghy FM, Specht K, Muller HW, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage. 2009;47:2073–82.

    PubMed  Google Scholar 

  108. Tomasi D, Caparelli EC, Chang L, Ernst T. fMRI-acoustic noise alters brain activation during working memory tasks. Neuroimage. 2005;27:377–86.

    PubMed  CAS  Google Scholar 

  109. Hayter A, Langdon D, Ramnani N. Cerebellar contributions to working memory. NeuroImage. 2007;36:943–54.

    PubMed  CAS  Google Scholar 

  110. Cardinal KS, Wilson SM, Giesser BS, Drain AE, Sicotte NL. A longitudinal fMRI study of the paced auditory serial addition task. Mult Scler. 2008;14:465–71.

    PubMed  CAS  Google Scholar 

  111. Forn C, Ventura-Campos N, Belenguer A, Belloch V, Parcet MA, Avila C. A comparison of brain activation patterns during covert and overt paced auditory serial addition test tasks. Hum Brain Mapp. 2008;29:644–50.

    PubMed  Google Scholar 

  112. Kirschen M, Chen S, Schraedley-Desmond P, Desmond J. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. NeuroImage. 2005;24:462–72.

    PubMed  Google Scholar 

  113. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22:2663–76.

    PubMed  Google Scholar 

  114. Majerus S, Bastin C, Poncelet M, Van der Linden M, Salmon E, Collette F, et al. Short-term memory and the left intraparietal sulcus: focus of attention? Further evidence from a face short-term memory paradigm. Neuroimage. 2007;35:353–67.

    PubMed  CAS  Google Scholar 

  115. Gruber O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex. 2001;11:1047–55.

    PubMed  CAS  Google Scholar 

  116. Baddeley A. Working memory. Science. 1992;255:556–9.

    PubMed  CAS  Google Scholar 

  117. Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6:193–201.

    PubMed  Google Scholar 

  118. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20:271–9.

    PubMed  Google Scholar 

  119. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46:880–95.

    PubMed  Google Scholar 

  120. Kirschen MP, Chen SH, Desmond JE. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol. 2010;23:51–63.

    PubMed  Google Scholar 

  121. Henson RN, Burgess N, Frith CD. Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia. 2000;38:426–40.

    PubMed  CAS  Google Scholar 

  122. Chein JM, Schneider W. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res Cogn Brain Res. 2005;25:607–23.

    PubMed  Google Scholar 

  123. Jahanshahi M, Dirnberger G, Fuller R, Frith CD. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage. 2000;12:713–25.

    PubMed  CAS  Google Scholar 

  124. Daniels C, Witt K, Wolff S, Jansen O, Deuschl G. Rate dependency of the human cortical network subserving executive functions during generation of random number series—a functional magnetic resonance imaging study. Neurosci Lett. 2003;345:25–8.

    PubMed  CAS  Google Scholar 

  125. Schall U, Johnston P, Lagopoulos J, Juptner M, Jentzen W, Thienel R, et al. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. Neuroimage. 2003;20:1154–61.

    PubMed  Google Scholar 

  126. Blackwood N, Ffytche D, Simmons A, Bentall R, Murray R, Howard R. The cerebellum and decision making under uncertainty. Brain Res Cogn Brain Res. 2004;20:46–53.

    PubMed  Google Scholar 

  127. Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, et al. Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res. 2004;21:193–205.

    PubMed  Google Scholar 

  128. Lie CH, Specht K, Marshall JC, Fink GR. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage. 2006;30:1038–49.

    PubMed  Google Scholar 

  129. Mulder MJ, Baeyens D, Davidson MC, Casey BJ, van den Ban E, van Engeland H, et al. Familial vulnerability to ADHD affects activity in the cerebellum in addition to the prefrontal systems. J Am Acad Child Adolesc Psychiatry. 2008;47:68–75.

    PubMed  Google Scholar 

  130. Bonnet MC, Dilharreguy B, Allard M, Deloire MS, Petry KG, Brochet B. Differential cerebellar and cortical involvement according to various attentional load: role of educational level. Hum Brain Mapp. 2009;30:1133–43.

    PubMed  Google Scholar 

  131. Tomasi D, Chang L, Caparelli E, Ernst T. Different activation patterns for working memory load and visual attention load. Brain Res. 2007;1132:158–65.

    PubMed  CAS  Google Scholar 

  132. Bellebaum C, Daum I. Cerebellar involvement in executive control. Cerebellum. 2007;6:184–92.

    PubMed  Google Scholar 

  133. George MS, Ketter TA, Gill DS, Haxby JV, Ungerleider LG, Herscovitch P, et al. Brain regions involved in recognizing facial emotion or identity: an oxygen-15 PET study. J Neuropsychiatry Clin Neurosci. 1993;5:384–94.

    PubMed  CAS  Google Scholar 

  134. Imaizumi S, Mori K, Kiritani S, Kawashima R, Sugiura M, Fukuda H, et al. Vocal identification of speaker and emotion activates different brain regions. Neuroreport. 1997;8:2809–12.

    PubMed  CAS  Google Scholar 

  135. Lane RD, Reiman EM, Bradley MM, Lang PJ, Ahern GL, Davidson RJ, et al. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia. 1997;35:1437–44.

    PubMed  CAS  Google Scholar 

  136. Paradiso S, Andreasen NC, Oleary DS, Arndt S, Robinson RG. Cerebellar size and cognition: correlations with IQ, verbal memory and motor dexterity. Neuropsy Neuropsy Behav Neurol. 1997;10:1–8.

    CAS  Google Scholar 

  137. Paradiso S, Johnson DL, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry. 1999;156:1618–29.

    PubMed  CAS  Google Scholar 

  138. Gundel H, O'Connor MF, Littrell L, Fort C, Lane RD. Functional neuroanatomy of grief: an FMRI study. Am J Psychiatry. 2003;160:1946–53.

    PubMed  Google Scholar 

  139. Paradiso S, Robinson RG, Boles Ponto LL, Watkins GL, Hichwa RD. Regional cerebral blood flow changes during visually induced subjective sadness in healthy elderly persons. J Neuropsychiatry Clin Neurosci. 2003;15:35–44.

    PubMed  Google Scholar 

  140. Lee G, Meador K, Loring D, Allison J, Brown W, Paul L, et al. Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol. 2004;17:9–17.

    PubMed  Google Scholar 

  141. Takahashi H, Koeda M, Oda K, Matsuda T, Matsushima E, Matsuura M, et al. An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage. 2004;22:1247–54.

    PubMed  Google Scholar 

  142. Bermpohl F, Pascual-Leone A, Amedi A, Merabet LB, Fregni F, Gaab N, et al. Dissociable networks for the expectancy and perception of emotional stimuli in the human brain. Neuroimage. 2006;30:588–600.

    PubMed  Google Scholar 

  143. Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Sex differences in brain activation patterns during processing of positively and negatively valenced emotional words. Psychol Med. 2007;37:109–19.

    PubMed  Google Scholar 

  144. Schulte-Ruther M, Markowitsch HJ, Fink GR, Piefke M. Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy. J Cogn Neurosci. 2007;19:1354–72.

    PubMed  Google Scholar 

  145. Hall J, Whalley HC, McKirdy JW, Sprengelmeyer R, Santos IM, Donaldson DI, et al. A common neural system mediating two different forms of social judgement. Psychol Med. 2010;40:1183–92.

    PubMed  CAS  Google Scholar 

  146. Scheuerecker J, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Kleeman A, et al. Cerebral differences in explicit and implicit emotional processing—an fMRI study. Neuropsychobiology. 2007;56:32–9.

    PubMed  CAS  Google Scholar 

  147. Singer T, Seymour B, O'Doherty J, Kaube H, Dolan R, Frith C. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303:1157–62.

    PubMed  CAS  Google Scholar 

  148. Lamm C, Batson CD, Decety J. The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. J Cogn Neurosci. 2007;19:42–58.

    PubMed  Google Scholar 

  149. Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. Neuroimage. 2006;32:854–62.

    PubMed  Google Scholar 

  150. Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2010;46:161–9.

    PubMed  Google Scholar 

  151. Boyd LA, Vidoni ED, Siengsukon CF, Wessel BD. Manipulating time-to-plan alters patterns of brain activation during the Fitts' task. Exp Brain Res. 2009;194:527–39.

    PubMed  Google Scholar 

  152. Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47:59–80.

    PubMed  Google Scholar 

  153. Lang P, Bradley M, Cuthbert B. International affective picture system (IAPS): affective ratings of pictures and instruction manual. Gainsville, FL: University of Florida; 2005.

    Google Scholar 

  154. Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34:781–92.

    PubMed  CAS  Google Scholar 

  155. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2:307–13.

    PubMed  CAS  Google Scholar 

  156. Dow R. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41:103–19.

    PubMed  CAS  Google Scholar 

  157. Ito M. New concepts in cerebellar function. Rev Neurol (Paris). 1993;149:596–9.

    CAS  Google Scholar 

  158. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    PubMed  Google Scholar 

  159. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    PubMed  CAS  Google Scholar 

  160. Schmahmann JD. Dysmetria of thought: correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci. 1996;19:472–3.

    Google Scholar 

  161. Ivry R. Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum Brain Mapp. 2000;9:115–8.

    PubMed  CAS  Google Scholar 

  162. Ghajar J, Ivry RB. The predictive brain state: asynchrony in disorders of attention? Neuroscientist. 2009;15:232–42.

    PubMed  Google Scholar 

  163. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review Cortex. 2010;46:845–57.

    CAS  Google Scholar 

  164. Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7:572–6.

    PubMed  Google Scholar 

  165. Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73:527–44.

    PubMed  Google Scholar 

  166. Doyon J, Song A, Karni A, Lalonde F, Adams M, Ungerleider L. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A. 2002;99:1017–22.

    PubMed  CAS  Google Scholar 

  167. Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A. 2008;105:8108–13.

    PubMed  CAS  Google Scholar 

  168. Grafton ST, Schmitt P, Van Horn J, Diedrichsen J. Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage. 2008;39:1383–95.

    PubMed  Google Scholar 

  169. Orban P, Peigneux P, Lungu O, Albouy G, Breton E, Laberenne F, et al. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning. Neuroimage. 2010;49:694–702.

    PubMed  Google Scholar 

  170. Tomassini V, Jbabdi S, Kincses ZT, Bosnell R, Douaud G, Pozzilli C, et al. Structural and functional bases for individual differences in motor learning. Hum Brain Mapp. 2011;32:494–508.

    PubMed  Google Scholar 

  171. Olsson CJ, Jonsson B, Nyberg L. Learning by doing and learning by thinking: an FMRI study of combining motor and mental training. Front Hum Neurosci. 2008;2:5.

    PubMed  Google Scholar 

  172. Swett BA, Contreras-Vidal JL, Birn R, Braun A. Neural substrates of graphomotor sequence learning: a combined FMRI and kinematic study. J Neurophysiol. 2010;103:3366–77.

    PubMed  Google Scholar 

  173. Xu D, Liu T, Ashe J, Bushara K. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26:5990–5.

    PubMed  CAS  Google Scholar 

  174. Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17.

    PubMed  Google Scholar 

  175. Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20:204–14.

    PubMed  Google Scholar 

  176. Bubic A, von Cramon DY, Jacobsen T, Schroger E, Schubotz RI. Violation of expectation: neural correlates reflect bases of prediction. J Cogn Neurosci. 2009;21:155–68.

    PubMed  Google Scholar 

  177. Liu T, Xu D, Ashe J, Bushara K. Specificity of inferior olive response to stimulus timing. J Neurophysiol. 2008;100:1557–61.

    PubMed  CAS  Google Scholar 

  178. Luaute J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, et al. Dynamic changes in brain activity during prism adaptation. J Neurosci. 2009;29:169–78.

    PubMed  CAS  Google Scholar 

  179. Nadig KG, Jancke L, Luchinger R, Lutz K. Motor and non-motor error and the influence of error magnitude on brain activity. Exp Brain Res. 2010;202:45–54.

    PubMed  Google Scholar 

  180. Guenther FH. Cortical interactions underlying the production of speech sounds. J Commun Disord. 2006;39:350–65.

    PubMed  Google Scholar 

  181. Riecker A, Brendel B, Ziegler W, Erb M, Ackermann H. The influence of syllable onset complexity and syllable frequency on speech motor control. Brain Lang. 2008;107:102–13.

    PubMed  Google Scholar 

  182. Christoffels IK, Formisano E, Schiller NO. Neural correlates of verbal feedback processing: an fMRI study employing overt speech. Hum Brain Mapp. 2007;28:868–79.

    PubMed  Google Scholar 

  183. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.

    PubMed  Google Scholar 

Download references

Conflict of Interest Statement

There is no conflict of interest, financial or otherwise, that might bias this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Stoodley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoodley, C.J. The Cerebellum and Cognition: Evidence from Functional Imaging Studies. Cerebellum 11, 352–365 (2012). https://doi.org/10.1007/s12311-011-0260-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0260-7

Keywords

Navigation