Skip to main content

Advertisement

Log in

Non-invasive Cerebellar Stimulation—a Consensus Paper

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The field of neurostimulation of the cerebellum either with transcranial magnetic stimulation (TMS; single pulse or repetitive (rTMS)) or transcranial direct current stimulation (tDCS; anodal or cathodal) is gaining popularity in the scientific community, in particular because these stimulation techniques are non-invasive and provide novel information on cerebellar functions. There is a consensus amongst the panel of experts that both TMS and tDCS can effectively influence cerebellar functions, not only in the motor domain, with effects on visually guided tracking tasks, motor surround inhibition, motor adaptation and learning, but also for the cognitive and affective operations handled by the cerebro-cerebellar circuits. Verbal working memory, semantic associations and predictive language processing are amongst these operations. Both TMS and tDCS modulate the connectivity between the cerebellum and the primary motor cortex, tuning cerebellar excitability. Cerebellar TMS is an effective and valuable method to evaluate the cerebello-thalamo-cortical loop functions and for the study of the pathophysiology of ataxia. In most circumstances, DCS induces a polarity-dependent site-specific modulation of cerebellar activity. Paired associative stimulation of the cerebello-dentato-thalamo-M1 pathway can induce bidirectional long-term spike-timing-dependent plasticity-like changes of corticospinal excitability. However, the panel of experts considers that several important issues still remain unresolved and require further research. In particular, the role of TMS in promoting cerebellar plasticity is not established. Moreover, the exact positioning of electrode stimulation and the duration of the after effects of tDCS remain unclear. Future studies are required to better define how DCS over particular regions of the cerebellum affects individual cerebellar symptoms, given the topographical organization of cerebellar symptoms. The long-term neural consequences of non-invasive cerebellar modulation are also unclear. Although there is an agreement that the clinical applications in cerebellar disorders are likely numerous, it is emphasized that rigorous large-scale clinical trials are missing. Further studies should be encouraged to better clarify the role of using non-invasive neurostimulation techniques over the cerebellum in motor, cognitive and psychiatric rehabilitation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADM:

Abductor digiti minimi

BCIs:

Brain–computer interfaces

CB:

Cerebellum

CBI:

Cerebellar–brain inhibition

cSP:

Cortical silent period

cTBS:

Continuous theta burst stimulation

DCS:

Direct current stimulation

EMG:

Electromyographic

FDI:

First dorsal interosseous

fMRI:

Functional magnetic resonance imaging

LICI:

Long interval intracortical inhibition

LTD:

Long-term depression

LTP:

Long-term potentiation

M1:

Primary motor cortex

MEP:

Motor evoked potential

mSI:

Motor surround inhibition

PAS:

Paired associative stimulation

PET:

Positron emission tomography

PSP:

Progressive supranuclear palsy

rTMS:

Repetitive transcranial magnetic stimulation

SICI:

Short interval intracortical inhibition

SRTT:

Serial reaction time task

STDP:

Spike-timing-dependent plasticity

tDCS:

Transcranial direct current stimulation

TES:

Transcranial electric stimulation

TMS:

Transcranial magnetic stimulation single shock

VAS:

Visual analogue scale

VWM:

Verbal working memory

References

  1. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    PubMed  Google Scholar 

  2. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    CAS  PubMed  Google Scholar 

  3. Ito M. Cerebellum and neural control. New York: Raven; 1984.

    Google Scholar 

  4. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54:957–1006.

    CAS  PubMed  Google Scholar 

  5. Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84(1):585–90.

    CAS  PubMed  Google Scholar 

  6. Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD. Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol. 1991;441(1):57–72.

    CAS  PubMed  Google Scholar 

  7. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.

    CAS  PubMed  Google Scholar 

  8. Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4(4):218–23.

    PubMed  Google Scholar 

  9. Ugawa Y, Iwata NK. Cerebellar stimulation in normal subjects and ataxic patients. In: Hallett M, Chokroverty S, editors. Magnetic stimulation in clinical neurophysiology. 2nd ed. Philadelphia: Elsevier; 2005. p. 197–210.

    Google Scholar 

  10. Groiss SJ, Ugawa Y. Cerebellar stimulation in ataxia. Cerebellum. 2012;11(2):440–2.

    PubMed  Google Scholar 

  11. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Ugawa Y, Genba-Shimizu K, Rothwell JC, Iwata M, Kanazawa I. Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Ann Neurol. 1994;36(1):90–6.

    CAS  PubMed  Google Scholar 

  13. Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, et al. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1997;104(5):453–8.

    CAS  PubMed  Google Scholar 

  14. Shirota Y, Hamada M, Hanajima R, Terao Y, Matsumoto H, Ohminami S, et al. Cerebellar dysfunction in progressive supranuclear palsy: a transcranial magnetic stimulation study. Mov Disord Off J Mov Disord Soc. 2010;25(14):2413–9.

    Google Scholar 

  15. Kikuchi S, Mochizuki H, Moriya A, Nakatani-Enomoto S, Nakamura K, Hanajima R, et al. Ataxic hemiparesis: neurophysiological analysis by cerebellar transcranial magnetic stimulation. Cerebellum. 2012;11(1):259–63.

    PubMed  Google Scholar 

  16. Ugawa Y. Can we see the cerebellar activation effect by TMS over the back of the head? Clin Neurophysiol. 2009;120(12):2006–7.

    PubMed  Google Scholar 

  17. Shirota Y, Hanajima R, Hamada M, Terao Y, Matsumoto H, Tsutsumi R, et al. Inter-individual variation in the efficient stimulation site for magnetic brainstem stimulation. Clin Neurophysiol. 2011;122(10):2044–8.

    PubMed  Google Scholar 

  18. Mottolese C, Richard N, Harquel S, Szathmari A, Sirigu A, Desmurget M. Mapping motor representations in the human cerebellum. Brain. 2013;136:330–42.

    PubMed  Google Scholar 

  19. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol. 1994;36:618–24.

    CAS  PubMed  Google Scholar 

  20. Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376:188–93.

    CAS  PubMed  Google Scholar 

  21. Koch G, Mori F, Marconi B, Codeca C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119:2559–69.

    PubMed  Google Scholar 

  22. Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176:440–7.

    PubMed  Google Scholar 

  23. Langguth B, Eichhammer P, Zowe M, Landgrebe M, Binder H, Sand P, et al. Modulating cerebello-thalamocortical pathways by neuronavigated cerebellar repetitive transcranial stimulation (rTMS). Neurophysiol Clin. 2008;38(5):289–95.

    CAS  PubMed  Google Scholar 

  24. Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140:505–10.

    CAS  PubMed  Google Scholar 

  25. Carrillo F, Palomar FJ, Conde V, Diaz-Corrales FJ, Porcacchia P, Fernandez-Del-Olmo M, et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s disease. Brain Stimul. 2013;6(4):582–9.

    PubMed  Google Scholar 

  26. Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, et al. Cerebellar modulation of human associative plasticity. J Physiol. 2012;590:2365–74.

    CAS  PubMed  Google Scholar 

  27. Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23:305–14.

    CAS  PubMed  Google Scholar 

  28. Lu MK, Tsai CH, Ziemann U. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front Hum Neurosci. 2012;6:260.

    PubMed Central  PubMed  Google Scholar 

  29. Koch G, Brusa L, Carrillo F, Lo Gerfo E, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73:113–9.

    CAS  PubMed  Google Scholar 

  30. Brusa L, Ceravolo R, Kiferle L, Monteleone F, Iani C, Schillaci O, et al. Metabolic changes induced by theta burst stimulation of the cerebellum in dyskinetic Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:59–62.

    PubMed  Google Scholar 

  31. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.

    PubMed  Google Scholar 

  32. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    PubMed  Google Scholar 

  33. Foerster A, Rocha S, Wiesiolek C, Chagas AP, Machado G, Silva E, et al. Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning. Eur J Neurosci. 2013;37(5):786–94.

    PubMed  Google Scholar 

  34. Block HJ, Celnik P. Can cerebellar transcranial direct current stimulation become a valuable neurorehabilitation intervention? Expert Rev Neurother. 2012;12(11):1275–7.

    CAS  PubMed  Google Scholar 

  35. Wei P, He W, Zhou Y, Wang L. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation. IEEE Trans Neural Syst Rehabil Eng 2013; 21:404–415.

    Google Scholar 

  36. Manto M. Cerebellar disorders. A pratical approach to diagnosis and management. Cambridge University Press, Cambridge; 2010.

  37. Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A. 2012;109:6710–5.

    PubMed Central  PubMed  Google Scholar 

  38. Oulad Ben Taib N, Manto M. Trains of transcranial direct current stimulation antagonize motor cortex hypoexcitability induced by acute hemicerebellectomy. J Neurosurg. 2009;111:796–806.

    Google Scholar 

  39. Hore J, Flament D. Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. J Neurophysiol. 1988;60(4):1285–302.

    CAS  PubMed  Google Scholar 

  40. Liepert J, Kucinski T, Tüscher O, Pawlas F, Bäumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35(11):2484–8.

    CAS  PubMed  Google Scholar 

  41. Wessel K, Tegenthoff M, Vorgerd M, Otto V, Nitschke MF, Malin JP. Enhancement of inhibitory mechanisms in the motor cortex of patients with cerebellar degeneration: a study with transcranial magnetic brain stimulation. Electroencephalogr Clin Neurophysiol. 1996;101(4):273–80.

    CAS  PubMed  Google Scholar 

  42. Liepert J, Wessel K, Schwenkreis P, Trillenberg P, Otto V, Vorgerd M, et al. Reduced intracortical facilitation in patients with cerebellar degeneration. Acta Neurol Scand. 1998;98(5):318–23.

    CAS  PubMed  Google Scholar 

  43. Oulad Ben Taib N, Manto M. Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast 2013; 2013: 1–12. doi: 10.1155/2013/613197

  44. Diener HC, Dichgans J, Bacher M, Guschlbauer B. Characteristic alterations of long-loop “reflexes” in patients with Friedreich’s disease and late atrophy of the cerebellar anterior lobe. J Neurol Neurosurg Psychiatry. 1984;47:679–85.

    CAS  PubMed  Google Scholar 

  45. Grimaldi G, Manto M. Anodal transcranial direct current stimulation (t-DCS) of the cerebellum decreases the intensity of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng 2013; doi: 10.1007/s10439-013-0846-y

  46. Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7.

    PubMed  Google Scholar 

  47. Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70.

    PubMed  Google Scholar 

  48. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12(4):485–92.

    CAS  PubMed  Google Scholar 

  49. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.

    CAS  PubMed  Google Scholar 

  50. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2012;6(4):649–53.

    PubMed  Google Scholar 

  51. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94.

    PubMed Central  PubMed  Google Scholar 

  52. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99.

    PubMed  Google Scholar 

  53. Cooper IS. Twenty-five years of experience with physiological neurosurgery. Neurosurgery. 1981;9:190–200.

    CAS  PubMed  Google Scholar 

  54. Müller-Dahlhaus F, Ziemann U, Classen J. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Syn Neurosci. 2010;2:1–11.

    Google Scholar 

  55. Bi G, Poo M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci. 2001;24:139–66.

    CAS  PubMed  Google Scholar 

  56. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–84.

    PubMed  Google Scholar 

  57. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002;543:699–708.

    CAS  PubMed  Google Scholar 

  58. Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol. 2003;89:2339–45.

    PubMed  Google Scholar 

  59. Buch ER, Johnen VM, Nelissen N, O’shea J, Rushworth MF. Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J Neurosci. 2011;31:17669–79.

    CAS  PubMed  Google Scholar 

  60. Arai N, Müller-Dahlhaus F, Murakami T, Bliem B, Lu MK, Ugawa Y, et al. State-dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network. J Neurosci. 2011;31:15376–83.

    CAS  PubMed  Google Scholar 

  61. Stanton PK, Sejnowski TJ. Associative long-term depression in the hippocampus induced by Hebbian covariance. Nature. 1989;339:215–8.

    CAS  PubMed  Google Scholar 

  62. Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, et al. Consensus: motor cortex plasticity protocols. Brain Stimul. 2008;1:164–82.

    PubMed  Google Scholar 

  63. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2009;3:161–9.

    PubMed  Google Scholar 

  64. Sakihara K, Yorifuji S, Ihara A, Izumi H, Kono K, Takahashi Y, et al. Transcranial magnetic stimulation over the cerebellum evokes late potential in the soleus muscle. Neurosci Res. 2003;46(2):257–62.

    CAS  PubMed  Google Scholar 

  65. Sakihara K, Hirata M, Nakagawa S, Fujiwara N, Sekino M, Ueno S, et al. Late response evoked by cerebellar stimuli: effect of optokinetic stimulation. Neuroreport. 2007;18(9):891–4.

    PubMed  Google Scholar 

  66. Hiraoka K, Horino K, Yagura A, Matsugi A. Cerebellar TMS evokes a long latency motor response in the hand during a visually-guided manual tracking task. Cerebellum. 2010;9(3):454–60.

    PubMed  Google Scholar 

  67. Matsugi A, Iwata Y, Mori N, Horino H, Hiraoka K. Long latency electromyographic response induced by transcranial magnetic stimulation over the cerebellum preferentially appears during continuous visually-guided manual tracking task. Cerebellum. 2013;12(2):147–54.

    PubMed  Google Scholar 

  68. Miall RC, Imamizu H, Miyauchi S. Activation of the cerebellum in co-ordinated eye and hand tracking movements: an fMRI study. Exp Brain Res. 2000;135(1):22–33.

    CAS  PubMed  Google Scholar 

  69. Vercher JL, Gauthier GM. Cerebellar involvement in the coordination control of the oculo-manual tracking system: effects of cerebellar dentate nucleus lesion. Exp Brain Res. 1988;73(1):155–66.

    CAS  PubMed  Google Scholar 

  70. Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol. 1996;101(1):58–66.

    CAS  PubMed  Google Scholar 

  71. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.

    CAS  PubMed  Google Scholar 

  72. Sohn YH, Hallett M. Surround inhibition in human motor system. Exp Brain Res. 2004;158(4):397–404.

    PubMed  Google Scholar 

  73. Kassavetis P, Hoffland BS, Saifee TA. Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res. 2011;209(3):437–42.

    PubMed  Google Scholar 

  74. Sadnicka A, Kassavetis P, Saifee TA, Parees I, Rothwell JC, Edwards MJ. Cerebellar transcranical direct current stimulation does not alter motor surround inhibition. Int J Neurosci. 2013;123(6):425–32.

    PubMed  Google Scholar 

  75. Beck S, Hallett M. Surround inhibition in the motor system. Exp Brain Res. 2011;210(2):165–72.

    PubMed  Google Scholar 

  76. Beck S, Houdayer E, Richardson SP, Hallett M. The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul. 2009;2(4):208–14.

    PubMed Central  PubMed  Google Scholar 

  77. Houdayer E, Beck S, Karabanov A. The differential modulation of the ventral premotor–motor interaction during movement initiation is deficient in patients with focal hand dystonia. Eur J Neurosci. 2012;35(3):478–85.

    PubMed Central  PubMed  Google Scholar 

  78. Manto M, Bower JM, Conforto AB. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2011;11(2):457–87.

    Google Scholar 

  79. Saito Y, Yokota T, Yuasa T. Suppression of motor cortical excitability by magnetic stimulation of the cerebellum. Brain Res. 1995;694(1–2):200–6.

    CAS  PubMed  Google Scholar 

  80. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–47.

    CAS  PubMed  Google Scholar 

  81. Kassavetis P, Saifee TA, Sadnicka A. Adaptation of surround inhibition in the human motor system. Exp Brain Res. 2012;222(3):211–7.

    CAS  PubMed  Google Scholar 

  82. Mazzoni P, Krakauer J. An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci. 2006;26(14):3642–5.

    CAS  PubMed  Google Scholar 

  83. Tseng Y, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol. 2007;98(1):54–62.

    PubMed  Google Scholar 

  84. Huang VS, Haith A, Mazzoni P, Krakauer JW. Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron. 2011;70(4):787–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Izawa J, Shadmehr R. Learning from sensory and reward prediction errors during motor adaptation. Plos Comput Biol. 2011;7(3):e1002012.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bastian AJ. Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol. 2011;21(4):596–601.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Martin T, Keating J, Goodkin H, Bastian A, Thach W. Throwing while looking through prisms. 1. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119:1183–98.

    PubMed  Google Scholar 

  88. Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol. 2005;93(5):2809–21.

    PubMed  Google Scholar 

  89. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26(36):9107–16.

    CAS  PubMed  Google Scholar 

  90. Gilbert PFC, Thach WT. Purkinje-cell activity during motor learning. Brain Res. 1977;128(2):309–28.

    CAS  PubMed  Google Scholar 

  91. Medina J, Nores W, Ohyama T, Mauk M. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol. 2000;10(6):717–24.

    CAS  PubMed  Google Scholar 

  92. Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.

    PubMed  Google Scholar 

  93. Schlerf JE, Galea JM, Bastian AJ, Celnik PA. Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci. 2012;32(34):11610–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Block H, Celnik P. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning. Cerebellum. 2013; doi: 10.1007/s12311-013-0486-7

  95. KH E, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2012. doi:10.1002/hbm.22194.

    Google Scholar 

  96. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.

    PubMed  Google Scholar 

  97. O’Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. Clin Exp Neuropsychol. 2012;34(1):35–56.

    Google Scholar 

  98. Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2013. doi:10.1016/j.neuroimage.2013.04.122.

    PubMed  Google Scholar 

  99. Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004;16(9):1605–11.

    PubMed  Google Scholar 

  100. Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590:887–97.

    CAS  PubMed  Google Scholar 

  101. D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):761–72.

    PubMed  Google Scholar 

  102. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

    PubMed  Google Scholar 

  103. Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol. 2012;63:1–29.

    PubMed  Google Scholar 

  104. Sternberg S. Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci. 1969;57:421–57.

    CAS  PubMed  Google Scholar 

  105. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage. 2005;24:332–8.

    PubMed  Google Scholar 

  106. Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.

    PubMed  Google Scholar 

  107. Timmann D, Daum I. How consistent are cognitive impairments in patients with cerebellar disorders? Behav Neurol. 2010;23:81–100.

    PubMed  Google Scholar 

  108. Wechsler D. WMS-R: Wechsler Memory Scale-Revised: manual. San Antonio: Psychological Corp.: Harcourt Brace Jovanovich; 1987.

    Google Scholar 

  109. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(Pt 2):306–20.

    PubMed  Google Scholar 

  110. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    CAS  PubMed  Google Scholar 

  111. Desmond JE, Chen SH, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58:553–60.

    PubMed  Google Scholar 

  112. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    CAS  PubMed  Google Scholar 

  113. Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8:399–402.

    PubMed  Google Scholar 

  114. Jones LL, Estes Z. Lexical priming: associative, semantic, and thematic influences on word recognition. In: Adelman J (ed) Visual word recognition, Vol II: meaning and context, individuals and development. Psychology, New York; 2012. pp. 44–72.

  115. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired nonmotor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992;115:155–78.

    PubMed  Google Scholar 

  116. Gebhart AL, Petersen SE, Thach WT. Role of the posterolateral cerebellum in language. Ann N Y Acad Sci. 2002;978:318–33.

    PubMed  Google Scholar 

  117. Petersen SE, Fox PT, Posner ML, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1:153–70.

    CAS  PubMed  Google Scholar 

  118. Frings M, Dimitrova A, Schorn CF, Elles H-G, Hein-Kropp C, Gizewski ER, et al. Cerebellar involvement in verb generation: an fMRI study. Neurosci Lett. 2006;409:19–23.

    CAS  PubMed  Google Scholar 

  119. Argyropoulos GP, Muggleton N. Effects of posterolateral cerebellar TMS on processing semantic associations. Cerebellum. 2012;12(1):83–96.

    Google Scholar 

  120. Argyropoulos GP. Cerebellar theta-burst stimulation selectively enhances lexical associative priming. Cerebellum. 2011;10(3):540–50.

    PubMed  Google Scholar 

  121. Argyropoulos GP, Kimiskidis VK, Papagiannopoulos S. Theta-burst stimulation of the right neocerebellar vermis selectively disrupts the practice-induced acceleration of lexical decisions. Behav Neurosci. 2011;125(5):724–34.

    PubMed  Google Scholar 

  122. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6.

    CAS  PubMed  Google Scholar 

  123. Arasanz CP, Staines WR, Roy EA, Schweizer TA. The cerebellum and its role in word generation: a cTBS study. Cortex 2012; 48:718–724.

    Google Scholar 

  124. Lesage E, Morgan BE, Olson AC, Meyer AS, Miall RC. Cerebellar rTMS disrupts predictive language processing. Curr Biol. 2012;22(18):794–5.

    Google Scholar 

  125. Leggio M, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    CAS  PubMed  Google Scholar 

  126. Richter S, Kaiser O, Hein-Kropp C, Dimitrova A, Gizewski E, Beck A, et al. Preserved verb generation in patients with cerebellar atrophy. Neuropsychologia. 2004;42:1235–46.

    CAS  PubMed  Google Scholar 

  127. Oliveri M, Torriero S, Koch G, Salerno S, Petrosini L, Caltagirone C. The role of transcranial magnetic stimulation in the study of cerebellar cognitive function. Cerebellum. 2007;6:95–101.

    PubMed  Google Scholar 

  128. De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain and language. 2013. doi:10.1016/j.bandl.2012.11.001.

    PubMed  Google Scholar 

  129. Bloedel JR. Functional heterogeneity with structural homogeneity—how does the cerebellum operate? Behav Brain Sci. 1992;15(4):666–78.

    Google Scholar 

  130. Miall RC. The cerebellum, predictive control and motor coordination. Novartis Found Symp. 1998;218:272–84.

    CAS  PubMed  Google Scholar 

  131. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    PubMed  Google Scholar 

  132. Booth JR, Wood L, Lu D, Houk JC, Bitan T. The role of the basal ganglia and cerebellum in language processing. Brain Res. 2008;1133(1):136–44.

    Google Scholar 

  133. Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, et al. Cerebellar morphology in developmental dyslexia. Neuropsychologia. 2002;40(8):1285–92.

    PubMed  Google Scholar 

  134. Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage. 2012;62(2):816–47.

    PubMed Central  PubMed  Google Scholar 

  135. Fedorenko E, Hsieh P-J, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J Neurophysiol. 2010;104(2):1177–94.

    PubMed  Google Scholar 

Download references

Conflict of Interest

We have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Grimaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimaldi, G., Argyropoulos, G.P., Boehringer, A. et al. Non-invasive Cerebellar Stimulation—a Consensus Paper. Cerebellum 13, 121–138 (2014). https://doi.org/10.1007/s12311-013-0514-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0514-7

Keywords

Navigation