Skip to main content
Log in

Netherton Syndrome: A Genotype-Phenotype Review

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Netherton syndrome (OMIM #256500) is a rare but severe autosomal recessive form of ichthyosis that affects the skin, hair, and immune system. The identification of SPINK5, which encodes for the serine protease inhibitor LEKTI, as the gene responsible for Netherton syndrome, enabled the search for causative mutations in Netherton syndrome patients and families. However, information regarding these mutations and their association with the pathological Netherton syndrome phenotype is scarce. Herein, we provide an up-to-date overview of 80 different mutations in exonic as well as intronic regions that have been currently identified in 172 homozygous or compound heterozygous patients from 144 families. Genotypes with mutations located more upstream in LEKTI correlate with more severe phenotypes compared with similar mutations located towards the 3′ region. Furthermore, splicing mutations and post-transcriptional mechanism of nonsense-mediated mRNA decay affect LEKTI expression in variable ways. Genotype–phenotype correlations form the basis of prenatal diagnosis in families with a history of Netherton syndrome and when consanguinity is implied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sprecher E, Amin S, Nielsen K, Prendiville JS, Uitto J, Richard G, et al. The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol. 2001;117(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  2. Pruszkowski A, Bodemer C, Fraitag S, Teillac-Hamel D, Amoric JC, de Prost Y. Neonatal and infantile erythrodermas: a retrospective study of 51 patients. Arch Dermatol. 2000;136(7):875–80.

    Article  CAS  PubMed  Google Scholar 

  3. Chavanas S, Garner C, Bodemer C, Ali M, Teillac DH, Wilkinson J, et al. Localization of the Netherton syndrome gene to chromosome 5q32, by linkage analysis and homozygosity mapping. Am J Hum Genet. 2000;66(3):914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25(2):141–2.

    Article  CAS  PubMed  Google Scholar 

  5. Tartaglia-Polcini A, Bonnart C, Micheloni A, Cianfarani F, Andrè A, Zambruno G, et al. SPINK5, the defective gene in netherton syndrome, encodes multiple LEKTI isoforms derived from alternative pre-mRNA processing. J Invest Dermatol. 2006;126(2):315–24.

    Article  CAS  PubMed  Google Scholar 

  6. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18(9):3607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bitoun E, Micheloni A, Lamant L, Bonnart C, Tartaglia-Polcini A, Cobbold C, et al. LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet. 2003;12(19):2417–30.

    Article  CAS  PubMed  Google Scholar 

  8. Mägert HJ, Ständker L, Kreutzmann P, Zucht HD, Reinecke M, Sommerhoff CP, et al. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem. 1999;274(31):21499–502.

    Article  PubMed  Google Scholar 

  9. Lauber T, Schulz A, Schweimer K, Adermann K, Marx UC. Homologous proteins with different folds: the three-dimensional structures of domains 1 and 6 of the multiple Kazal-type inhibitor LEKTI. J Mol Biol. 2003;328(1):205–19.

    Article  CAS  PubMed  Google Scholar 

  10. Fortugno P, Bresciani A, Paolini C, Pazzagli C, El Hachem M, D’Alessio M, et al. Proteolytic activation cascade of the Netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J Invest Dermatol. 2011;131(11):2223–32.

    Article  CAS  PubMed  Google Scholar 

  11. Egelrud T, Brattsand M, Kreutzmann P, Walden M, Vitzithum K, Marx UC, et al. hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol. 2005;153(6):1200–3.

    Article  CAS  PubMed  Google Scholar 

  12. Borgoño CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem. 2007;282(6):3640–52.

    Article  PubMed  Google Scholar 

  13. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18(9):3607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitsudo K, Jayakumar A, Henderson Y, Frederick MJ, Kang Y, Wang M, et al. Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry. 2003;42(13):3874–81.

    Article  CAS  PubMed  Google Scholar 

  15. Jayakumar A, Kang Y, Mitsudo K, Henderson Y, Frederick MJ, Wang M, et al. Expression of LEKTI domains 6-9’ in the baculovirus expression system: recombinant LEKTI domains 6–9′ inhibit trypsin and subtilisin A. Protein Expr Purif. 2004;35(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  16. Schechter NM, Choi EJ, Wang ZM, Hanakawa Y, Stanley JR, Kang Y, et al. Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem. 2005;386(11):1173–84.

    Article  CAS  PubMed  Google Scholar 

  17. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37(1):56–65.

    CAS  PubMed  Google Scholar 

  18. Yang T, Liang D, Koch PJ, Hohl D, Kheradmand F, Overbeek PA. Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5−/− mice. Genes Dev. 2004;18(19):2354–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clements JA, Mukhtar A, Verity K, Pullar M, McNeill P, Cummins J, et al. Kallikrein gene expression in human pituitary tissues. Clin Endocrinol. 1996;44:223–31.

    Article  CAS  Google Scholar 

  21. Komatsu N, Saijoh K, Otsuki N, Kishi T, Micheal IP, Obiezu CV, et al. Proteolytic processing of human growth hormone by multiple tissue kallikreins and regulation by the serine protease inhibitor Kazal-Type5 (SPINK5) protein. Clin Chim Acta. 2007;377(1–2):228–36.

    Article  CAS  PubMed  Google Scholar 

  22. Aydın BK, Baş F, Tamay Z, Kılıç G, Süleyman A, Bundak R, et al. Netherton syndrome associated with growth hormone deficiency. Pediatr Dermatol. 2014;31(1):90–4.

    Article  PubMed  Google Scholar 

  23. Maatouk I, Moutran R, Tomb R. Narrowband ultraviolet B phototherapy associated with improvement in Netherton syndrome. Clin Exp Dermatol. 2012;37(4):364–6.

    Article  CAS  PubMed  Google Scholar 

  24. Gallagher JL, Patel NC. Subcutaneous immunoglobulin replacement therapy with Hizentra® is safe and effective in two infants. J Clin Immunol. 2012;32(3):474–6.

    Article  PubMed  Google Scholar 

  25. Tan X, Soualmia F, Furio L, Renard JF, Kempen I, Qin L, et al. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem. 2015;58(2):598–612.

    Article  CAS  PubMed  Google Scholar 

  26. Yalcin AD. A case of netherton syndrome: successful treatment with omalizumab and pulse prednisolone and its effects on cytokines and immunoglobulin levels. Immunopharmacol Immunotoxicol. 2016;38(2):162–6.

    Article  PubMed  Google Scholar 

  27. Di WL, Mellerio JE, Bernadis C, Harper J, Abdul-Wahab A, Ghani S, et al. Phase I study protocol for ex-vivo lentiviral gene therapy for the inherited skin disease, Netherton syndrome. Hum Gene Ther Clin Dev. 2013;24(4):182–90.

    Article  CAS  PubMed  Google Scholar 

  28. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21(6):577–81.

    Article  CAS  PubMed  Google Scholar 

  29. Krawczak M, Cooper DN. The human gene mutation database. Trends Genet. 1997;13(3):121–2.

    Article  CAS  PubMed  Google Scholar 

  30. Cooper DN, Ball EV, Krawczak M. The human gene mutation database. Nucleic Acids Res. 1998;26(1):285–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krawczak M, Ball EV, Fenton I, Stenson PD, Abeysinghe S, Thomas N, et al. Human gene mutation database-a biomedical information and research resource. Hum Mutat. 2000;15(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  32. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Müller FB, Hausser I, Berg D, Casper C, Maiwald R, Jung A, et al. Genetic analysis of a severe case of Netherton syndrome and application for prenatal testing. Br J Dermatol. 2002;146(3):495–9.

    Article  PubMed  Google Scholar 

  34. Bitoun E, Chavanas S, Irvine AD, Lonie L, Bodemer C, Paradisi M, et al. Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol. 2002;118(2):352–61.

    Article  CAS  PubMed  Google Scholar 

  35. Bitoun E, Bodemer C, Amiel J, de Prost Y, Stoll C, Calvas P, et al. Prenatal diagnosis of a lethal form of Netherton syndrome by SPINK5 mutation analysis. Prenat Diagn. 2002;22(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ong C, O’Toole EA, Ghali L, Malone M, Smith VV, Callard R, et al. LEKTI demonstrable by immunohistochemistry of the skin: a potential diagnostic skin test for Netherton syndrome. Br J Dermatol. 2004;151(6):1253–7.

    Article  CAS  PubMed  Google Scholar 

  37. Descargues P, Deraison C, Prost C, Fraitag S, Mazereeuw-Hautier J, D’Alessio M, et al. Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol. 2006;126(7):1622–32.

    Article  CAS  PubMed  Google Scholar 

  38. Tiryakioğlu NO, Önal Z, Saygili SK, Önal H, Ersoy Tunali N. Treatment of ichthyosis and hypernatremia in a patient with Netherton syndrome with a SPINK5 c.153delT mutation using kallikrein inhibiting ointment. Int J Dermatol. doi:10.1111/ijd.13248 [Epub 2016 Feb 17].

  39. Bingol B, Tasdemir S, Gunenc Z, Abike F, Esenkaya S, Tavukcuoglu S, et al. Prenatal diagnosis of Comel-Netherton syndrome with PGD, case report and review article. J Assist Reprod Genet. 2011;28(7):615–20.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Itoh K, Kako T, Suzuki N, Sakurai N, Sugiyama K, Yamanishi K. Severe lethal phenotype of a Japanese case of Netherton syndrome with homozygous founder mutations of SPINK5 c.375_376delAT. J Dermatol. 2015;42(12):1212–4.

    Article  PubMed  Google Scholar 

  41. Hachem JP, Wagberg F, Schmuth M, Crumrine D, Lissens W, Jayakumar A, et al. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol. 2006;126(7):1609–21.

    Article  CAS  PubMed  Google Scholar 

  42. Moskowitz DG, Fowler AJ, Heyman MB, Cohen SP, Crumrine D, Elias PM, et al. Pathophysiologic basis for growth failure in children with ichthyosis: an evaluation of cutaneous ultrastructure, epidermal permeability barrier function, and energy expenditure. J Pediatr. 2004;145(1):82–92.

    Article  CAS  PubMed  Google Scholar 

  43. Kilic G, Guler N, Ones U, Tamay Z, Guzel P. Netherton syndrome: report of identical twins presenting with severe atopic dermatitis. Eur J Pediatr. 2006;165(9):594–7.

    Article  PubMed  Google Scholar 

  44. Israeli S, Sarig O, Garty BZ, Indelman M, Bergman R, Sprecher E, et al. Molecular analysis of a series of Israeli families with Comèl-Netherton syndrome. Dermatology. 2014;228(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hannula-Jouppi K, Laasanen SL, Ilander M, Furio L, Tuomiranta M, et al. Intrafamily and interfamilial phenotype variation and immature immunity in patients with Netherton syndrome and Finnish SPINK5 founder mutation. JAMA Dermatol. 2016;152(4):435–42.

    Article  PubMed  Google Scholar 

  46. Raghunath M, Tontsidou L, Oji V, Aufenvenne K, Schürmeyer-Horst F, Jayakumar A, et al. SPINK5 and Netherton syndrome: novel mutations, demonstration of missing LEKTI, and differential expression of transglutaminases. J Invest Dermatol. 2004;123(3):474–83.

    Article  CAS  PubMed  Google Scholar 

  47. Fong K, Akdeniz S, Isi H, Taskesen M, McGrath JA, Lai-Cheong JE. New homozygous SPINK5 mutation, p.Gln333X, in a Turkish pedigree with Netherton syndrome. Clin Exp Dermatol. 2011;36(4):412–5.

    Article  CAS  PubMed  Google Scholar 

  48. Macknet CA, Morkos A, Job L, Garberoglio MC, Clark RD, Macknet KD Jr, et al. An infant with Netherton syndrome and persistent pulmonary hypertension requiring extracorporeal membrane oxygenation. Pediatr Dermatol. 2008;25(3):368–72.

    Article  PubMed  Google Scholar 

  49. Diociaiuti A, Castiglia D, Fortugno P, Bartuli A, Pascucci M, Zambruno G, et al. Lethal Netherton syndrome due to homozygous p.Arg371X mutation in SPINK5. Pediatr Dermatol. 2013;30(4):e65–7.

    Article  PubMed  Google Scholar 

  50. Zhao Y, Ma ZH, Yang Y, Yang SX, Wu LS, Ding BL, et al. SPINK5 gene mutation and decreased LEKTI activity in three CN patients with Netherton’s syndrome. Clin Exp Dermatol. 2007;32(5):564–7.

    Article  CAS  PubMed  Google Scholar 

  51. Capri Y, Vanlieferinghen P, Boeuf B, Dechelotte P, Hovnanian A, Lecomte B. A lethal variant of Netherton syndrome in a large inbred family Arch Pediatr. 2011;18(3):294–8.

    CAS  Google Scholar 

  52. Akagi A, Kitoh A, Moniaga CS, Fujimoto A, Fujikawa H, Shimomura Y, et al. Case of Netherton syndrome with an elevated serum thymus and activation-regulated chemokine level. J Dermatol. 2013;40(9):752–3.

    Article  PubMed  Google Scholar 

  53. Numata S, Hamada T, Teye K, Matsuda M, Ishii N, Karashima T, et al. Complete maternal isodisomy of chromosome 5 in a Japanese patient with Netherton syndrome. J Invest Dermatol. 2014;134(3):849–52.

    Article  CAS  PubMed  Google Scholar 

  54. Renner ED, Hartl D, Rylaarsdam S, Young ML, Monaco-Shawver L, Kleiner G, et al. Comèl-Netherton syndrome defined as primary immunodeficiency. J Allergy Clin Immunol. 2009;124(3):536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chao SC, Richard G, Lee JY. Netherton syndrome: report of two TW siblings with staphylococcal scalded skin syndrome and mutation of SPINK5. Br J Dermatol. 2005;152(1):159–65.

    Article  PubMed  Google Scholar 

  56. Hosomi N, Fukai K, Nakanishi T, Funaki S, Ishii M. Caspase-1 activity of stratum corneum and serum interleukin-18 level are increased in patients with Netherton syndrome. Br J Dermatol. 2008;159(3):744–6.

    CAS  PubMed  Google Scholar 

  57. Komatsu N, Takata M, Otsuki N, Ohka R, Amano O, Takehara K, et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol. 2002;118(3):436–43.

    Article  CAS  PubMed  Google Scholar 

  58. Komatsu N, Saijoh K, Jayakumar A, Clayman GL, Tohyama M, Suga Y, et al. Correlation between SPINK5 gene mutations and clinical manifestations in Netherton syndrome patients. J Invest Dermatol. 2008;128(5):1148–59.

    Article  CAS  PubMed  Google Scholar 

  59. Tüysüz B, Ojalvo D, Mat C, Zambruno G, Covaciu C, Castiglia D, et al. A new SPINK5 donor splice site mutation in siblings with Netherton syndrome. Acta Derm Venereol. 2010;90(1):95–6.

    Article  PubMed  Google Scholar 

  60. Di WL, Hennekam RC, Callard RE, Harper JI. A heterozygous null mutation combined with the G1258A polymorphism of SPINK5 causes impaired LEKTI function and abnormal expression of skin barrier proteins. Br J Dermatol. 2009;161(2):404–12.

    Article  CAS  PubMed  Google Scholar 

  61. Lacroix M, Lacaze-Buzy L, Furio L, Tron E, Valari M, Van der Wier G, et al. Clinical expression and new SPINK5 splicing defects in Netherton syndrome: unmasking a frequent founder synonymous mutation and unconventional intronic mutations. J Invest Dermatol. 2012;132(3 Pt 1):575–82.

    Article  CAS  PubMed  Google Scholar 

  62. Fortugno P, Grosso F, Zambruno G, Pastore S, Faletra F, Castiglia D. A synonymous mutation in SPINK5 exon 11 causes Netherton syndrome by altering exonic splicing regulatory elements. J Hum Genet. 2012;57(5):311–5.

    Article  CAS  PubMed  Google Scholar 

  63. Chatziioannidis I, Babatseva E, Patsatsi A, Galli-Tsinopoulou A, Sarri C, Lithoxopoulou M, et al. Netherton syndrome in a neonate with possible growth hormone deficiency and transient hyperaldosteronism. Case Rep Pediatr. 2015;2015:818961.

    Google Scholar 

  64. Kogut M, Salz M, Hadaschik EN, Kohlhase J, Hartmann M. New mutation leading to the full variety of typical features of the Netherton syndrome. J Dtsch Dermatol Ges. 2015;13(7):691–3.

    PubMed  Google Scholar 

  65. Roedl D, Oji V, Buters JT, Behrendt H, Braun-Falco M. rAAV2-mediated restoration of LEKTI in LEKTI-deficient cells from Netherton patients. J Dermatol Sci. 2011;61(3):194–8.

    Article  CAS  PubMed  Google Scholar 

  66. Numata S, Teye K, Krol RP, Okamatsu Y, Hashikawa K, Matsuda M, et al. A compound synonymous mutation c.474G>A with p.Arg578X mutation in SPINK5 causes splicing disorder and mild phenotype in Netherton syndrome. Exp Dermatol. 2016;25(7):568–70.

    Article  PubMed  Google Scholar 

  67. Geyer AS, Ratajczak P, Pol-Rodriguez M, Millar WS, Garzon M, Richard G. Netherton syndrome with extensive skin peeling and failure to thrive due to a homozygous frameshift mutation in SPINK5. Dermatology. 2005;210(4):308–14.

    Article  PubMed  Google Scholar 

  68. Sprecher E, Tesfaye-Kedjela A, Ratajczak P, Bergman R, Richard G. Deleterious mutations in SPINK5 in a patient with congenital ichthyosiform erythroderma: molecular testing as a helpful diagnostic tool for Netherton syndrome. Clin Exp Dermatol. 2004;29(5):513–7.

    Article  CAS  PubMed  Google Scholar 

  69. Alpigiani MG, Salvati P, Schiaffino MC, Occella C, Castiglia D, Covaciu C, et al. A new SPINK5 mutation in a patient with Netherton syndrome: a case report. Pediatr Dermatol. 2012;29(4):521–2.

    Article  PubMed  Google Scholar 

  70. Mizuno Y, Suga Y, Haruna K, Muramatsu S, Hasegawa T, Kohroh K, et al. A case of a Japanese neonate with congenital ichthyosiform erythroderma diagnosed as Netherton syndrome. Clin Exp Dermatol. 2006;31(5):677–80.

    Article  CAS  PubMed  Google Scholar 

  71. Guerra L, Fortugno P, Pedicelli C, Mazzanti C, Proto V, Zambruno G, et al. Ichthyosis linearis circumflexa as the only clinical manifestation of Netherton syndrome. Acta Derm Venereol. 2015;95(6):720–4.

    Article  CAS  PubMed  Google Scholar 

  72. Mizuno Y, Suga Y, Muramatsu S, Hasegawa T, Shimizu T, Ogawa H. A Japanese infant with localized ichthyosis linearis circumflexa on the palms and soles harbouring a compound heterozygous mutation in the SPINK5 gene. Br J Dermatol. 2005;153(3):661–3.

    Article  CAS  PubMed  Google Scholar 

  73. Shimomura Y, Sato N, Kariya N, Takatsuka S, Ito M. Netherton syndrome in two Japanese siblings with a novel mutation in the SPINK5 gene: immunohistochemical studies of LEKTI and other epidermal molecules. Br J Dermatol. 2005;153(5):1026–30.

    Article  CAS  PubMed  Google Scholar 

  74. Lin SP, Huang SY, Tu ME, Wu YH, Lin CY, Lin HY, et al. Netherton syndrome: mutation analysis of two TW families. Arch Dermatol Res. 2007;299(3):145–50.

    Article  PubMed  Google Scholar 

  75. Konishi T, Tsuda T, Sakaguchi Y, Imai Y, Ito T, Hirota S, et al. Upregulation of interleukin-33 in the epidermis of two Japanese patients with Netherton syndrome. J Dermatol. 2014;41(3):258–61.

    Article  CAS  PubMed  Google Scholar 

  76. Chao SC, Tsai YM, Lee JY. A compound heterozygous mutation of the SPINK5 gene in a TW boy with Netherton syndrome. J Formos Med Assoc. 2003;102(6):418–23.

    CAS  PubMed  Google Scholar 

  77. Goujon E, Beer F, Fraitag S, Hovnanian A, Vabres P. ‘Matchstick’ eyebrow hairs: a dermoscopic clue to the diagnosis of Netherton syndrome. J Eur Acad Dermatol Venereol. 2010;24(6):740–1.

    Article  CAS  PubMed  Google Scholar 

  78. Xi-Bao Z, San-Quan Z, Yu-Qing H, Yu-Wu L, Quan L, Chang-Xing L. Netherton syndrome in one CN adult with a novel mutation in the SPINK5 gene and immunohistochemical studies of LEKTI. Indian J Dermatol. 2012;57(4):265–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zissis Mamuris.

Ethics declarations

Conflict of interest

Authors C. A. Sarri, A. Roussaki-Schulze, Y. Vasilopoulos, E. Zafiriou, A. Patsatsi, C. Stamatis, P. Gidarokosta, D. Sotiriadis, T. Sarafidou, and Z. Mamuris declare that they have no conflicts of interest.

Funding

Funding was received from Postgraduate Courses “Biotechnology—Quality Assessment in Nutrition and the Environment” and “Applications of Molecular Biology—Genetics—Diagnostic Biomarkers” of the Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarri, C.A., Roussaki-Schulze, A., Vasilopoulos, Y. et al. Netherton Syndrome: A Genotype-Phenotype Review. Mol Diagn Ther 21, 137–152 (2017). https://doi.org/10.1007/s40291-016-0243-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0243-y

Keywords

Navigation