Skip to main content
Log in

The Contributions of Cyclooxygenase-2 to Tumor Angiogenesis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cyclooxygenase-2 (COX-2) is an immediate early response gene that can be induced by a variety of tumor promoters, cytokines, growth factors and hypoxia. COX-2 overexpression is linked to all stages of carcinogenesis with the enzyme localized to the neoplastic cells, microvascular endothelial cells, and stromal fibroblasts. The contributions of COX-2 in tumor angiogenesis include: (a) the increased expression of the proangiogenic growth factor VEGF; (b) the production of the eicosanoid products thromboxane A2, PGE2 and PGI2 that can directly stimulate endothelial cell migration and growth factor-induced angiogenesis; and potentially, (c) the inhibition of endothelial cell apoptosis by stimulation of Bcl-2 or Akt activation. Selective pharmacological inhibitors of COX-2 as angiosuppressive agents could have therapeutic benefit in the treatment of neoplastic disease from prevention through treatment of advanced metastatic disease. These agents are safe and well tolerated and can be added to chemotherapy and radiation therapy where angiogenesis inhibitors appear to provide at least additive therapeutic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med 285: 1182-1186, 1971

    Google Scholar 

  2. Folkman J, Shing Y: Angiogenesis. J Biol Chem 267: 10931-10934, 1992

    Google Scholar 

  3. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R: Id1 and Id3 are required for neurogenesis, angiogenesis, vascularization of tumour xenografts. Nature 401: 670-677, 1999

    Google Scholar 

  4. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996

    Google Scholar 

  5. Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med 49: 407-424, 1998

    Google Scholar 

  6. Kerbel RS: Tumor angiogenesis: Past, present and the near future. Carcinogenesis 21: 505-515, 2000.

    Google Scholar 

  7. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D: Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66: 1095-1104, 1991

    Google Scholar 

  8. Folkman J, Klagsburn M: Angiogenic factors. Science 235: 442-447, 1987

    Google Scholar 

  9. Brem S: Angiogenesis and cancer control: From concept to therapeutic trial. Cancer Control 6: 436-458, 1999

    Google Scholar 

  10. Pepper MS, Montesano R: Proteolytic balance and capillary morphogenesis. Cell Differ Dev 32: 319-327, 1990

    Google Scholar 

  11. Pepper MS, Montesano R, Mandriota SJ, Orci L, Vassalli JD: Angiogenesis: A paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49: 138-162, 1996

    Google Scholar 

  12. Paku S, Paweletz N: First steps of tumor-related angiogenesis. Lab Invest 65: 334-346, 1991

    Google Scholar 

  13. Paku S: Current concepts of tumor-induced angiogenesis. Pathol Oncol Res 4: 62-75, 1998

    Google Scholar 

  14. Pintucci G, Bikfalvi A, Klein S, Rifkin DB: Angiogenesis and the fibrinolytic system. Semin Thromb Hemost 22: 517-524, 1996

    Google Scholar 

  15. Pluda JM: Tumor-associated angiogenesis: mechanisms, clinical implications and therapeutic strategies. Semin Oncol 24: 203-218, 1997

    Google Scholar 

  16. Diaz-Flores L, Gutierrez R, Varela H: Angiogenesis: An update. Histol Histopathol 9: 807-843, 1994

    Google Scholar 

  17. D'Amore PA: Capillary growth: A two-cell system. Semin Cancer Biol 3: 49-56, 1992

    Google Scholar 

  18. Hirschi KK, D'Amore PA: Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS 79: 419-428, 1997

    Google Scholar 

  19. Nehls V, Denzer K, Drenckhahn D: Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270: 469-474, 1992

    Google Scholar 

  20. Risau W, Flamme I: Vasculogenesis. Annu Rev Cell Dev Biol 11: 73-91, 1995

    Google Scholar 

  21. Beck LJ, D'Amore PA: Vascular development: Cellular and molecular regulation. FASEB J 11: 365-373, 1997

    Google Scholar 

  22. Poole TJ, Coffin JD: Vasculogenesis and angiogenesis: Two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251: 224-231, 1989

    Google Scholar 

  23. Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T: Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102: 471-478, 1988

    Google Scholar 

  24. Pardanaud L, Yassine F, Dieterlen-Lievre F: Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105: 473-485, 1989

    Google Scholar 

  25. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S: Expression of VEGFR-2 andAC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95: 952-958, 2000

    Google Scholar 

  26. Rafii S: Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105: 17-19, 2000

    Google Scholar 

  27. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964-967, 1997

    Google Scholar 

  28. Folkman J: Angiogenesis, angiogenesis inhibition: An overview. EXS 79: 1-8, 1997

    Google Scholar 

  29. Folkman J: New perspectives in clinical oncology from angiogenesis research. Eur J Cancer 32A: 2534-2539, 1996

    Google Scholar 

  30. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27-31, 1995

    Google Scholar 

  31. Folkman J: The role of angiogenesis in tumor growth. Semin Cancer Biol 3: 65-71, 1992

    Google Scholar 

  32. Lannutti BJ, Gately ST, Quevedo ME, Soff GA, Paller AS: Humanangiostatin inhibits murine hemangioendothelioma tumor growth in vivo. Cancer Res 57: 5277-5280, 1997

    Google Scholar 

  33. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285, 1997

    Google Scholar 

  34. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, Soff GA: The mechanism of cancermediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 94: 10868-10872, 1997

    Google Scholar 

  35. Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA, Bigelow K, Heimann R, Gately S, Dhanabal M, Soff GA, Sukhatme VP, Kufe DW, Weichselbaum RR: Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394: 287-291, 1998

    Google Scholar 

  36. Denekamp J, Hill SA, Hobson B: Vascular occlusion and tumour cell death. Eur J Cancer Clin Oncol 19: 271-275, 1983

    Google Scholar 

  37. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K: Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60: 1306-1311, 2000

    Google Scholar 

  38. Masferrer JL, Koki A, Seibert K: COX-2 inhibitors. A new class of antiangiogenic agents. Ann NY Acad Sci 889: 84-86, 1999.

    Google Scholar 

  39. Vane JR, Bakhle YS, Botting RM: Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38: 97-120, 1998

    Google Scholar 

  40. Fosslien E: Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci 30: 3-21, 2000

    Google Scholar 

  41. DuBois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE: Cyclooxygenase in biology and disease. FASEB J, 12: 1063-1073, 1998

    Google Scholar 

  42. Ristimaki A, Garfinkel S, Wessendorf J, Maciag T, Hla T: Induction of cyclooxygenase-2 by interleukin-1 alpha. Evidence for post-transcriptional regulation. J Biol Chem 269: 11769-11775, 1994

    Google Scholar 

  43. Perkins DJ, Kniss DA: Rapid and transient induction of cyclo-oxygenase 2 by epidermal growth factor in human amnion-derived WISH cells. Biochem J 321(Pt 3): 677-681, 1997

    Google Scholar 

  44. Sheng H, Shao J, Dixon DA, Williams CS, Prescott SM, DuBois RN, Beauchamp RD: Transforming growth factor-beta1 enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem 275: 6628-6635, 2000

    Google Scholar 

  45. Diaz A, Chepenik KP, Korn JH, ReginatoAM, Jimenez SA: Differential regulation of cyclooxygenases 1 and 2 by interleukin-1 beta, tumor necrosis factor-alpha, and transforming growth factor-beta 1 in human lung fibroblasts. Exp Cell Res 241: 222-229, 1998

    Google Scholar 

  46. Perkins DJ, Kniss DA: Tumor necrosis factor-alpha promotes sustained cyclooxygenase-2 expression: Attenuation by dexamethasone and NSAIDs. Prostaglandins 54: 727-743, 1997

    Google Scholar 

  47. Peterson HI: Tumor angiogenesis inhibition by prostaglandin synthetase inhibitors. Anticancer Res 6: 251-253, 1986

    Google Scholar 

  48. Deutsch TA, Hughes WF: Suppressive effects of indomethacin on thermally induced neovascularization of rabbit corneas. Am J Ophthalmol 87: 536-540, 1979

    Google Scholar 

  49. Parke A, Bhattacherjee P, Palmer RM, Lazarus NR: Characterization and quantification of copper sulfateinduced vascularization of the rabbit cornea. Am J Pathol 130: 173-178, 1988

    Google Scholar 

  50. Ziche M, Jones J, Gullino PM: Role of prostaglandin E1 and copper in angiogenesis. J Natl Cancer Inst 69: 475-482, 1982

    Google Scholar 

  51. Davel LE, Miguez MM, de Lustig ES: Evidence that indomethacin inhibits lymphocyte-induced angiogenesis. Transplantation 39: 564-565, 1985

    Google Scholar 

  52. Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfeh IJ, Tarnawski AS: Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: Insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 5: 1418-1423, 1999

    Google Scholar 

  53. Golab J, Kozar K, Kaminski R, Czajka A, Marczak M, Switaj T, Giermasz A, Stoklosa T, Lasek W, Zagozdzon R, Mucha K, Jakobisiak M: Interleukin 12 and indomethacin exert a synergistic, angiogenesis-dependent antitumor activity in mice. Life Sci 66: 1223-1230, 2000

    Google Scholar 

  54. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM: Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87: 803-809, 1996

    Google Scholar 

  55. Nishimura G, Yanoma S, Mizuno H, Kawakami K, Tsukuda M: A selective cyclooxygenase-2 inhibitor suppresses tumor growth in nude mouse xenografted with human head and neck squamous carcinoma cells. Jpn J Cancer Res 90: 1152-1162, 1999

    Google Scholar 

  56. Pentland AP, Schoggins JW, Scott GA, Khan KN, Han R: Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 20: 1939-1944, 1999

    Google Scholar 

  57. Kawamori T, Rao CV, Seibert K, Reddy BS: Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 58: 409-412, 1998

    Google Scholar 

  58. Okajima E, Denda A, Ozono S, Takahama M, Akai H, Sasaki Y, Kitayama W, Wakabayashi K, Konishi Y: Chemopreventive effects of nimesulide, a selective cyclooxygenase-2 inhibitor, on the development of rat urinary bladder carcinomas initiated by N-butyl-N-([4]-hydroxybutyl)nitrosamine. Cancer Res 58: 3028-3031, 1998

    Google Scholar 

  59. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN: Cyclooxygenase regulates angiogenesis induced by colon cancer cells [published erratum appears in Cell 1998 Jul 24; 94 (2): Following 271]. Cell 93: 705-716, 1998

    Google Scholar 

  60. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN: Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 105: 1589-1594, 2000

    Google Scholar 

  61. Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, Hori M: Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest 79: 1469-1477, 1999

    Google Scholar 

  62. Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ: Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274: 10911-10915, 1999

    Google Scholar 

  63. Volpert OV, Dameron KM, Bouck N: Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14: 1495-1502, 1997

    Google Scholar 

  64. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582-1584, 1994

    Google Scholar 

  65. Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ: Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res 59: 4574-4577, 1999

    Google Scholar 

  66. Pourtau J, Mirshahi F, Li H, Muraine M, Vincent L, Tedgui A, Vannier JP, Soria J, Vasse M, Soria C: Cyclooxygenase-2 activity is necessary for the angiogenic properties of oncostatin. MFEBS Lett 459: 453-457, 1999

    Google Scholar 

  67. Hull MA, Thomson JL, Hawkey CJ: Expression of cyclooxygenase 1 and 2 by human gastric endothelial cells. Gut 45: 529-536, 1999

    Google Scholar 

  68. Yamada M, Kawai M, Kawai Y, Mashima Y: The effect of selective cyclooxygenase-2 inhibitor on corneal angiogenesis in the rat. Curr Eye Res 19: 300-304, 1999

    Google Scholar 

  69. Ji YS, Xu Q, Schmedtje JFJ: Hypoxia induces high-mobility-group protein I(Y), transcription of the cyclooxygenase-2 gene in human vascular endothelium. Circ Res 83: 295-304, 1998

    Google Scholar 

  70. Schmedtje JFJ, Ji YS, Liu WL, DuBois RN, Runge MS: Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272: 601-608, 1997

    Google Scholar 

  71. Michiels C, Arnould T, Knott I, Dieu M, Remacle J: Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol 264: C866-C874, 1993

    Google Scholar 

  72. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature 359: 843-845, 1992

    Google Scholar 

  73. Liu Y, Cox SR, Morita T, Kourembanas S: Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circ Res 77: 638-643, 1995

    Google Scholar 

  74. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L: Ahypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182: 1683-1693, 1995

    Google Scholar 

  75. Yan SF, Tritto I, Pinsky D, Liao H, Huang J, Fuller G, Brett J, May L, Stern D: Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem 270: 11463-11471, 1995

    Google Scholar 

  76. Karakurum M, Shreeniwas R, Chen J, Pinsky D, Yan SD, Anderson M, Sunouchi K, Major J, Hamilton T, Kuwabara K: Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest 93: 1564-1570, 1994

    Google Scholar 

  77. Tian H, McKnight SL, Russell DW: Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72-82, 1997

    Google Scholar 

  78. Chiarugi V, Magnelli L, Gallo O: Cox-2, iNOS and p53 as play-makers of tumor angiogenesis (review). Int J Mol Med 2: 715-719, 1998

    Google Scholar 

  79. Fosslien E: Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci 30: 3-21, 2000

    Google Scholar 

  80. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B: Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715-725, 1998

    Google Scholar 

  81. Majima M, Hayashi I, Muramatsu M, Katada J, Yamashina S, Katori M: Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br J Pharmacol 130: 641-649, 2000.

    Google Scholar 

  82. Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM: Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Invest Ophthalmol Vis Sci 39: 581-591, 1998

    Google Scholar 

  83. Hoper MM, Voelkel NF, Bates TO, Allard JD, Horan M, Shepherd D, Tuder RM: Prostaglandins induce vascular endothelial growth factor in a human monocytic cell line and rat lungs via cAMP. Am J Respir Cell Mol Biol 17: 748-756, 1997

    Google Scholar 

  84. Rak J, Filmus J, Kerbel RS: Reciprocal paracrine interactions between tumour cells and endothelial cells: The 'angiogenesis progression' hypothesis. Eur J Cancer 32A: 2438-2450, 1996

    Google Scholar 

  85. Gruber R, Nothegger G, Ho GM, Willheim M, Peterlik M: Differential stimulation by PGE(2) and calcemic hormones of IL-6 in stromal/osteoblastic cells. Biochem Biophys Res Commun 270: 1080-1085, 2000

    Google Scholar 

  86. Singh A, Purohit A, Ghilchik MW, Reed MJ: The regulation of aromatase activity in breast fibroblasts: The role of interleukin-6 and prostaglandin E2. Endocr Relat Cancer 6: 139-147, 1999

    Google Scholar 

  87. Hinson RM, Williams JA, Shacter E: Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: Possible role of cyclooxygenase-2. Proc Natl Acad Sci USA 93: 4885-4890, 1996

    Google Scholar 

  88. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ: Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271: 736-741, 1996

    Google Scholar 

  89. Tsujii M, DuBois RN: Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83: 493-501, 1995

    Google Scholar 

  90. Nie D, Lamberti M, Zacharek A, Li L, Szekeres K, Tang K, Chen Y, Honn KV: Thromboxane A(2) regulation of endothelial cell migration, angiogenesis and tumor metastasis. Biochem Biophys Res Commun 267: 245-251, 2000

    Google Scholar 

  91. Herschman HR, Xie W, Reddy S: Inflammation, reproduction, cancer and all that. ::: The regulation and role of the inducible prostaglandin synthase. Bioessays 17: 1031-1037, 1995

    Google Scholar 

  92. Herschman HR: Prostaglandin synthase 2. Biochim Biophys Acta 1299: 125-140, 1996

    Google Scholar 

  93. Zachary I, Mathur A, Yla-Herttuala S, Martin J: Vascular protection: A novel nonangiogenic cardiovascular role for vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 20: 1512-1520, 2000

    Google Scholar 

  94. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB: Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem 274: 25130-25135, 1999

    Google Scholar 

  95. Krishnamurthy P, Bird IM, Sheppard C, Magness RR: Effects of angiogenic growth factors on endotheliumderived prostacyclin production by ovine uterine and placental arteries. Prostaglandins Other Lipid Mediat 57: 1-12, 1999

    Google Scholar 

  96. Satterwhite CM, Farrelly AM, Bradley ME: Chemotactic, mitogenic, and angiogenic actions of UTP on vascular endothelial cells. Am J Physiol 276: H1091-H1097, 1999

    Google Scholar 

  97. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM: Vascular endothelial growth factor/ vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97: 99-107, 1998

    Google Scholar 

  98. Bicknell R, Vallee BL: Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2. Proc Natl Acad Sci USA 86: 1573-1577, 1989

    Google Scholar 

  99. Gurubhagavatula I, Amrani Y, Pratico D, Ruberg FL, Albelda SM, Panettieri RAJ: Engagement of human PECAM-1 (CD31) on human endothelial cells increases intracellular calcium ion concentration and stimulates prostacyclin release. J Clin Invest 101: 212-222, 1998

    Google Scholar 

  100. Gullino PM, Ziche M, Alessandri G: Gangliosides, copper ions and angiogenic capacity of adult tissues. Cancer Metastasis Rev 9: 239-251, 1990

    Google Scholar 

  101. Gullino PM: Prostaglandins and gangliosides of tumor microenvironment: Their role in angiogenesis. Acta Oncol 34: 439-441, 1995

    Google Scholar 

  102. Ziche M, Morbidelli L, Alessandri G, Gullino PM: Angiogenesis can be stimulated or repressed in vivo by a change in GM3: GD3 ganglioside ratio. Lab Invest 67: 711-715, 1992

    Google Scholar 

  103. Ziche M, Alessandri G, Gullino PM: Gangliosides promote the angiogenic response. Lab Invest 61: 629-634, 1989

    Google Scholar 

  104. Form DM, Auerbach R: PGE2 and angiogenesis. Proc Soc Exp Biol Med 172: 214-218, 1983

    Google Scholar 

  105. Ben-Av P, Crofford LJ, Wilder RL, Hla T: Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: A potential mechanism for inflammatory angiogenesis. FEBS Lett 372: 83-87, 1995

    Google Scholar 

  106. Harada S, Rodan SB, Rodan GA: Expression and regulation of vascular endothelial growth factor in osteoblasts. Clin Orthop 76-80, 1995

  107. Harada S, Nagy JA, Sullivan KA, Thomas KA, Endo N, Rodan GA, Rodan SB: Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J Clin Invest 93: 2490-2496, 1994

    Google Scholar 

  108. Diaz-Flores L, Gutierrez R, Valladares F, Varela H, Perez M: Intense vascular sprouting from rat femoral vein induced by prostaglandins E1 and E2. Anat Rec 238: 68-76, 1994

    Google Scholar 

  109. Erickson BA, Longo WE, Panesar N, Mazuski JE, Kaminski DL: The effect of selective cyclooxygenase inhibitors on intestinal epithelial cell mitogenesis. J Surg Res 81: 101-107, 1999

    Google Scholar 

  110. Sheng H, Shao J, MorrowJD, Beauchamp RD, DuBois RN: Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58: 362-366, 1998

    Google Scholar 

  111. Sawaoka H, Kawano S, Tsuji S, Tsujii M, Gunawan ES, Takei Y, Nagano K, Hori M: Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice. Am J Physiol 274: G1061-G1067, 1998

    Google Scholar 

  112. Liu XH, Yao S, Kirschenbaum A, Levine AC: NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res 58: 4245-4249, 1998

    Google Scholar 

  113. Ren Y, Walker CDS, Deng J, Ruan KH, Kulmacz RJ: Topology of prostaglandin H synthase-1 in the endoplasmic reticulum membrane. Arch Biochem Biophys 323: 205-214, 1995

    Google Scholar 

  114. Otto JC, Smith WL: The orientation of prostaglandin endoperoxide synthases-1 and-2 in the endoplasmic reticulum. J Biol Chem 269: 19868-19875, 1994

    Google Scholar 

  115. Reiger MK, DeWitt DL, Schindler MS, Smith WL: Subcellular localization of prostaglandin endoperoxide synthase-2 in murine 3T3 cells. Arch Biochem Biophys 301: 439-444, 1993

    Google Scholar 

  116. Morita I, Schindler M, Regier MK, Otto JC, Hori T, DeWitt DL, Smith WL: Different intracellular locations for prostaglandin endoperoxide H synthase-1 and-2. J Biol Chem 270: 10902-10908, 1995

    Google Scholar 

  117. Nor JE, Christensen J, Mooney DJ, Polverini PJ: Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 154: 375-384, 1999

    Google Scholar 

  118. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS: The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275: 11397-11403, 2000

    Google Scholar 

  119. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC: Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275: 9102-9105, 2000

    Google Scholar 

  120. Dimmeler S, Zeiher AM: Akt takes center stage in angiogenesis signaling. Circ Res 86: 4-5, 2000

    Google Scholar 

  121. Jiang BH, Zheng JZ, Aoki M, Vogt PK: Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA 97: 1749-1753, 2000

    Google Scholar 

  122. Hermann C, Assmus B, Urbich C, ZeiherAM, Dimmeler S: Insulin-mediated stimulation of protein kinase Akt: A potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol 20: 402-409, 2000

    Google Scholar 

  123. Leese PT, Hubbard RC, Karim A, Isakson PC, Yu SS, Geis GS: Effects of celecoxib, a novel cyclooxygenase-2 inhibitor, on platelet function in healthy adults: A randomized, controlled trial. J Clin Pharmacol 40: 124-132, 2000

    Google Scholar 

  124. Clemett D, Goa KL: Celecoxib: A review of its use in osteoarthritis, rheumatoid arthritis and acute pain. Drugs 59: 957-980, 2000

    Google Scholar 

  125. Patrignani P: Nonsteroidal anti-inflammatory drugs, COX-2 and colorectal cancer. Toxicol Lett 112-113: 493-498, 2000

    Google Scholar 

  126. Emery P, Zeidler H, Kvien TK, Guslandi M, Naudin R, Stead H, Verburg KM, Isakson PC, Hubbard RC, Geis GS: Celecoxib versus diclofenac in long-term management of rheumatoid arthritis: Randomised double-blind comparison. Lancet 354: 2106-2111, 1999

    Google Scholar 

  127. Simon LS, Weaver AL, Graham DY, Kivitz AJ, Lipsky PE, Hubbard RC, Isakson PC, Verburg KM, Yu SS, Zhao WW, Geis GS: Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. JAMA 282: 1921-1928, 1999

    Google Scholar 

  128. Schnitzer TJ, Truitt K, Fleischmann R, Dalgin P, Block J, Zeng Q, Bolognese J, Seidenberg B, Ehrich EW: The safety profile, tolerability, and effective dose range of rofecoxib in the treatment of rheumatoid arthritis. Phase II Rofecoxib Rheumatoid Arthritis Study Group. Clin Ther 21: 1688-1702, 1999

    Google Scholar 

  129. Teicher BA, Sotomayor EA, Huang ZD: Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52: 6702-6704, 1992

    Google Scholar 

  130. Gorski DH, Mauceri HJ, Salloum RM, Gately S, Hellman S, Beckett MA, Sukhatme VP, Soff GA, Kufe DW, Weichselbaum RR: Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 58: 5686-5689, 1998

    Google Scholar 

  131. Milas L, Kishi K, Hunter N, Mason K, Masferrer JL, Tofilon PJ: Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst 91: 1501-1504, 1999

    Google Scholar 

  132. Kishi K, Petersen S, Petersen C, Hunter N, Mason K, Masferrer JL, Tofilon PJ, Milas L: Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 60: 1326-1331, 2000

    Google Scholar 

  133. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, Folkman J: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60: 1878-1886, 2000

    Google Scholar 

  134. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105: R15-R24, 2000

    Google Scholar 

  135. Hanahan D, Bergers G, Bergsland E: Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105: 1045-1047, 2000

    Google Scholar 

  136. Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T, Su LK, Levin B: The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342: 1946-1952, 2000

    Google Scholar 

  137. Stockbrugger RW: Nonsteroidal anti-inflammatory drugs (NSAIDs) in the prevention of colorectal cancer. Eur J Cancer Prev 8 Suppl 1: S21-S25, 1999

    Google Scholar 

  138. Fournier DB, Gordon GB: COX-2 and colon cancer: Potential targets for chemoprevention. J Cell Biochem Suppl 34: 97-102, 2000

    Google Scholar 

  139. Williams CRL, DuBois RN: The role of COX-2 in intestinal cancer. Ann NY Acad Sci 889: 72-83, 1999

    Google Scholar 

  140. Mestre JR, Chan G, Zhang F, Yang EK, Sacks PG, Boyle JO, Shah JP, Edelstein D, Subbaramaiah K, Dannenberg AJ: Inhibition of cyclooxygenase-2 expression. An approach to preventing head and neck cancer. Ann NY Acad Sci 889: 62-71, 1999

    Google Scholar 

  141. Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S, Seibert K, Rao CV: Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 60: 293-297, 2000

    Google Scholar 

  142. Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58-61, 1989

    Google Scholar 

  143. Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J, Hanahan D: Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA, 93: 2002-2007, 1996

    Google Scholar 

  144. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284: 808-812, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gately, S. The Contributions of Cyclooxygenase-2 to Tumor Angiogenesis. Cancer Metastasis Rev 19, 19–27 (2000). https://doi.org/10.1023/A:1026575610124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026575610124

Navigation