Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood

Abstract

Currently, amniocentesis, chorionic villus sampling (CVS) and fetal blood sampling are used to obtain fetal cells for genetic diagnosis. These invasive procedures pose a small but not negligible risk for the fetus. Efforts have been directed towards the enrichment of fetal cells, such as erythroblasts, from maternal blood and progress has been made in the diagnosis of some chromosomal disorders and in sex determinations. We now report the detection of point mutations in single gene disorders using this method of prenatal diagnosis by enriching fetal cells from maternal blood by magnetic cell sorting followed by isolation of pure fetal cells by microdissection. In two pregnancies at risk for sickle cell anaemia and β–thalassaemia, we successfully identified the fetal genotypes. Thus, prenatal diagnosis of single gene disorders by recovering fetal cells from maternal circulation appears to be a feasible approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kan, Y.W., Golbus, M.S., Klein, P. & Dozy, A.M. Successful application of prenatal diagnosis in a pregnancy at risk for homozygous β-thalassemia. New Engl. J. Med. 292, 1096–1099 (1975).

    Article  CAS  Google Scholar 

  2. Kan, Y.W. & Golbus, M.S. and Trecartin, R. Prenatal diagnosis of sickle cell anemia. New Engl. J. Med. 294, 1039–1040 (1976).

    Article  CAS  Google Scholar 

  3. Ottolenghi, S. et al. The severe form of alpha thalassaemia is caused by a haemoglobin gene deletion. Nature 251, 389–391 (1974).

    Article  CAS  Google Scholar 

  4. Taylor, J.M. et al. Genetic lesion in homozygous α-thalassaemia (hydrops fetalis). Nature 251, 392–393 (1974).

    Article  CAS  Google Scholar 

  5. Kan, Y.W., Golbus, M.S. & Dozy, A.M. Prenatal diagnosis of α-thalassemia: Clinical application of molecular hybridization. New Engl. J. Med. 295, 1165–1167 (1976).

    Article  CAS  Google Scholar 

  6. Dozy, A.M. et al. Prenatal diagnosis of homozygous α thalassemia. J. Am. Med. Assoc. 241, 1610–1612 (1979).

    Article  CAS  Google Scholar 

  7. Kan, Y.W. & Dozy, A.M. Polymorphism of DNA sequence adjacent to human β-globin structural gene: Relationship to sickle mutation. Proc. Natl. Acad. Sci. USA 75, 5631–5635 (1978).

    Article  CAS  Google Scholar 

  8. Chang, J.C. & Kan, Y.W. A sensitive new prenatal test for sickle cell anemia. New Engl. J. Med. 307, 30–32 (1982).

    Article  CAS  Google Scholar 

  9. Orkin, S.H., Little, P.F.R., Kazazian, H.H. Jr., & Brehm, C.D. Improved detection of the sickle mutation by DNA analysis and its application to prenatal diagnosis. New Engl. J. Med. 307, 32–36 (1982).

    Article  CAS  Google Scholar 

  10. Pirastu, M. et al. Prenatal diagnosis of β thalassemia: Direct detection of a single nucleotide mutation in DNA. New Engl. J. Med. 309, 284–287 (1983).

    Article  CAS  Google Scholar 

  11. Saiki, R.K. et al. Enzymatic amplification of β-globin genome sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1352 (1985).

    Article  CAS  Google Scholar 

  12. Evans, M.I. et al. Genetic diagnosis in the first trimester: the norm for the 1990s. Am. J. Obstet. Gynec. 160, 1332–1339 (1989).

    Article  CAS  Google Scholar 

  13. Simpson, J.L., Elias, S. Isolating fetal cells from maternal blood: Advances in prenatal diagnosis through molecular technology. J. Am. Med. Assoc. 270, 2357–2361 (1993).

    Article  CAS  Google Scholar 

  14. Adinolfi, M. Non-or minimally invasive prenatal diagnostic tests on maternal blood samples or transcervical cells. Prenat. Diagn. 15, 889–896 (1995).

    Article  CAS  Google Scholar 

  15. Bianchi, D. Prenatal diagnosis by analysis of fetal cells in maternal blood. J. Pediatr. 127, 847–856 (1995).

    Article  CAS  Google Scholar 

  16. Thomas, M.R. et al. The time of appearance and disappearance of fetal DNA from the maternal circulation. Prenat. Diagn. 15, 641–646 (1995).

    Article  CAS  Google Scholar 

  17. Herzenberg, L.A., Bianchi, D.W., Shroder, J., Cann, H.M., Iverson, G.M. Fetal cells in the blood of pregnant women: Detection and enrichment by fluorescence-activated cell sorting. Proc. Natl. Acad. Sci. USA 76, 1453–1455 (1979).

    Article  CAS  Google Scholar 

  18. Schröder;, J., Tiilikainen, A. & de la Chapelle, A. Fetal leukocytes in the maternal circulation after delivery. Transplantation 17, 346–354 (1974).

    Article  Google Scholar 

  19. Bianchi, D.W., Zickwolf, G.K., Weil, G.J., Sylvester, S. & DeMaria, M.A. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl. Acad. Sci. USA 93, 705–708 (1996).

    Article  CAS  Google Scholar 

  20. Hawes, C. et al. Detection of paternally inherited mutations for β-thalassemia in trophoblasts isolated from peripheral maternal blood. Ann. N. Y. Acad. Sci. 731, 217–225 (1994).

    Article  Google Scholar 

  21. Adinolfi, M. et al. Detection of fetal cells in transcervical samples and prenatal diagnosis of chromosomal abnormalities. Prenat. Diagn. 15, 943–949 (1995).

    Article  CAS  Google Scholar 

  22. Tutschek, B. et al. Isolation of fetal cells from transcervical samples by micromanipulation: Molecular confirmation of their fetal origin and diagnosis of fetal aneuploidy. Prenat. Diagn. 15, 951–960 (1995).

    Article  CAS  Google Scholar 

  23. Bianchi, D.W., Flint, A.F., Pizzimenti, M.F., Knoll, J.H.M. & Latt, S.A. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc. Natl. Acad. Sci. U.S.A. 87, 3279–3283 (1990).

    Article  CAS  Google Scholar 

  24. Bianchi, D.W. et al. Erythroid-specific antibodies enhance detection of fetal nucleated erythrocytes in maternal blood. Prenat. Diagn. 13, 293–300 (1993).

    Article  CAS  Google Scholar 

  25. Price, J.O. et al. Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am. J. Obstet. Gynec. 165, 1731–1737 (1991).

    Article  CAS  Google Scholar 

  26. Gänshirt-Ahlert, D. et al. Magnetic cell sorting and the transferrin receptor as potential means of prenatal diagnosis from maternal blood. Am. J. Obstet. Gynec. 166, 1350–1355 (1992).

    Article  Google Scholar 

  27. Gänshirt-Ahlert, D. et al. Detection of fetal trisomies 21 and 18 from maternal blood using triple gradient and magnetic cell sorting. Am. J. Rep. Immunol. 30, 194–201 (1993).

    Article  Google Scholar 

  28. Büsch, J. et al. Enrichment of fetal cells from maternal blood by high gradient magnetic cell sorting (Double MACS) for PCR-based genetic analysis. Prenat. Diagn. 14, 1129–1140 (1994).

    Article  Google Scholar 

  29. Zheng, Y.L. et al. Prenatal diagnosis from maternal blood: Simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes isolated by negative magnetic cell sorting. J. Med. Genet. 30, 1151–1156 (1993).

    Article  Google Scholar 

  30. Zheng, Y.-L., DeMaria, M., Zhen, D., Vadnais, T.J., & Bianchi, D.W. Flow sorting of fetal erythroblasts using intracytoplasmic anti-fetal haemoglobin: Preliminary observation on maternal samples. Prenat. Diagn. 15, 897–905 (1995).

    Article  CAS  Google Scholar 

  31. Bianchi, D. et al. Development of a model system to compare cell separation methods for the isolation of fetal cells from maternai blood. Prenat. Diagn. 16, 289–298 (1996).

    Article  CAS  Google Scholar 

  32. Geifman-Holtzman, O. et al. Detection of fetal HLA-DQa sequences in maternal blood: A gender-independent technique of fetal cell identification. Prenat. Diagn. 15, 261–268 (1995).

    Article  CAS  Google Scholar 

  33. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

  34. Maggio, A. et al. Rapid and simultaneous typing of hemoglobin S, hemoglobin C, and seven Mediterranean beta-thalassemia mutations by covalent reverse dot-blot analysis: Application to prenatal diagnosis in Sicily. Blood 81, 239–242 (1993).

    CAS  PubMed  Google Scholar 

  35. Cai, S.P., Wall, J., Kan, Y.W. & Chehab, F.F. Reverse dot blot probes for the screening of β-thalassemia mutations in Asians and American blacks. Human Mutation 3, 59–63 (1994).

    Article  CAS  Google Scholar 

  36. Chehab, F.F., Wall, J. & Cai, S.P. Analysis of PCR products by covalent reverse dot blot hybridization. in PCR Strategies. 30–139 (Academic Press, Inc. New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, MC., Goldberg, J. & Kan, Y. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet 14, 264–268 (1996). https://doi.org/10.1038/ng1196-264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing