Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of functional KATP channels in pancreatic β–cells causes persistent hyperinsulinemic hypoglycemia of infancy

Abstract

Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a disorder of childhood associated with inappropriate hypersecretion of insulin by the pancreas. The pathogenesis of the condition has hitherto remained controversial. We show here that insulinsecreting cells from a homogeneous group of five infants with PHHI lack ATP–sensitive K+ channel (KATP) activity. As a consequence, PHHI β–cells are spontaneously electrically active with high basal cytosolic Ca2+ concentrations due to Ca2+ influx. Our findings define the pathogenesis of this disease as a novel K+ channel disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morris, A.A.M. et al. Evaluation of fasts for investigating hypoglycaemia or suspected metabolic disease. Arch. Dis. Child. 75, 115–119 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aynsley-Green, A. Nesidioblastosis of the pancreas in infancy. Dev. Med. Child. Neurol. 23, 372–9 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Aynsley-Green, A. et al. Nesidioblastosis of the pancreas: Definition of the syndrome and the management of the severe neonatal hyperinsulinaemic hypoglycaemia. Arch. Dis. Child. 56, 496–508 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woolf, D.A., Leonard, J.V., Trembath, R.C., Pembury, M. & Grant, D.B., Evidence for an autosomal recessive variant. Arch. Dis. Child. 66, 529–530 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thornton, P.S. et al. Familial hyperinsulinism (HI) inherited in an autosomal dominant (AD) form differs clinically and genetically from the more common autosomal recessive (AR) form. Pediatr. Res. 37, 100A (1995).

    Google Scholar 

  6. Spitz, L., Bhargav, R.K., Grant, D.B. & Leonard, J.V., Surgical treatment of hyperinsulinaemic hypoglycaemia in infancy and childhood. Arch. Dis. Child. 67, 201–205 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaiser, N. et al. Regulation of insulin release in persistent hyperinsulinaemic hypoglycaemia of infancy studied in long-term culture of pancreatic tissue. Diabetologia 33, 482–488 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Glaser, B. et al. Familial hyperinsulinism maps to chromosome 11pl4–15.1, 30 cM centromeric to the insulin gene. Nature Genet. 7, 185–188 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Thomas, P.M. et al. Mutations in the sulfonylurea receptor gene in familial hyperinsulinemic hypoglycemia of infancy. Science 268, 426–429 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Aguilar-Bryan, L. et al. Cloning of the beta Cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science 268, 423–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Inagaki, N. et al. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Ashcroft, F.M., Harrison, D.E. & Ashcroft, S.J.H., Glucose induces closure of single potassium channels in isolated rat pancreatic beta-Cells. Nature 312, 446–448 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Dunne, M.J. & Petersen, O.H., Potassium selective ion channels in insulin-secreting Cells: Physiology, pharmacology and their role in stimulus secretion coupling. Biochim. Biophys. Acta (Rev. Biomembr.) 1071, 67–82 (1991).

    Article  CAS  Google Scholar 

  14. Mathew, P.M. et al. Persistent neonatal hyperinsulinism. Clin. Pediatr (USA) 27, 148–151 (1988).

    Article  CAS  Google Scholar 

  15. Sempoux, C. et al. Nesidioblastosis and persistent neonatal hyperinsulinism. Diabete Metab. 21, 402–407 (1995).

    CAS  PubMed  Google Scholar 

  16. Sakura, H., Ämmälä, C., Smith, P.A., Gribble, F.M. & Ashcroft, F.M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel expressed in pancreatic B-cells, brain, heart and skeletal muscle. FEBS Lett. 377, 338–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Nichols, C.G. et al. Adenosine diphosphate as an intraCellular regulator of insulin secretion. Science 272, 1785–1787 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Welsh, M.J. & Smith, H.E., (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254.

    Article  CAS  PubMed  Google Scholar 

  19. Kristidis, P. et al. Genetic determination of exocrine pancreatic function in cystic fibrosis. Am. J. Hum. Genet. 50, 1178–1184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheppard, D.N. et al. Mutations in CFTR associated with mild-disease-forms of cr channels with altered pore properties. Nature 362, 160–164 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Higgins, C.F. The ABC of channel regulation. Cell 82, 693–618 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lindley, K.J. et al. Ionic control of β-Cell function in nesidioblastosis: A possible therapeutic role for calcium channel blockade. Arch. Dis. Child. 74, 373–378 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brandhorst, H., Klitcsher, D., Hering, B.J., Ferderlin, R. & Bretzel, R.G., Influence of organ procurement on human islet isolation. Harm. Metab. Res. 25, 51–52 (1993).

    Google Scholar 

  24. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J., Improved patch-clamp techniques for high-resolution current recording from Cells and Cell-free membrane patches. Pfluegers Arch., 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  25. Lebrun, P. et al. Activation of ATP-dependent K+ channels and inhibition of insulin release; effect of BPDZ-62. J. Pharmacol. Exp. Ther. 277, 156–162 (1996).

    CAS  PubMed  Google Scholar 

  26. Squires, P.E., James, R.F.L., London, N.J.M. & Dunne, M.J. ATP-induced intracellular Ca2+ signals in isolated human insulin-secreting Cells. Pfluegers Arch. 427, 181–183 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kane, C., Shepherd, R., Squires, P. et al. Loss of functional KATP channels in pancreatic β–cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat Med 2, 1344–1347 (1996). https://doi.org/10.1038/nm1296-1344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1296-1344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing