Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neonatal screening for congenital adrenal hyperplasia

Abstract

Congenital adrenal hyperplasia (CAH) caused by steroid 21-hydroxylase deficiency occurs in 1:16,000–1:20,000 births. If not promptly diagnosed and treated, CAH can cause death in early infancy from shock, hyponatremia and hyperkalemia. Affected girls usually have ambiguous genitalia but boys appear normal; therefore, newborn babies are commonly screened for CAH in the US and many other countries. By identifying babies with severe, salt-wasting CAH before they develop adrenal crises, screening reduces morbidity and mortality, particularly among affected boys. Diagnosis is based on elevated levels of 17-hydroxyprogesterone, the preferred substrate for steroid 21-hydroxylase. Initial testing usually involves dissociation-enhanced lanthanide fluorescence immunoassay that has a low positive predictive value (about 1%), which leads to many follow-up evaluations that have negative results. The positive predictive value might be improved by second-tier screening using DNA-based methods or liquid chromatography followed by tandem mass spectrometry, but these methods are not widely adopted. Cost estimates for such screening range from US$20,000 to $300,000 per life-year saved. In babies with markedly abnormal screen results, levels of serum electrolytes and 17-hydroxyprogesterone should be immediately determined, but the most reliable way to diagnose CAH is measurement of levels of steroid precursors after stimulation with cosyntropin.

Key Points

  • Neonatal screening for congenital adrenal hyperplasia (CAH) caused by steroid 21-hydroxylase deficiency has been widely adopted in the US and many other countries

  • Neonatal screening for CAH reduces morbidity and mortality, particularly among boys, by identifying infants with the severe, salt-wasting form of CAH before they develop adrenal crises

  • Initial testing usually consists of an immunoassay for 17-hydroxyprogesterone levels; this assay has a low positive predictive value (approximately 1%), which results in many follow-up evaluations that have negative results

  • The positive predictive value might be improved by second-tier screening using DNA-based methods or liquid chromatography followed by tandem mass spectrometry, but these methods are not widely adopted yet

  • In infants with markedly abnormal test results, clinicians should immediately determine serum electrolyte and 17-hydroxyprogesterone levels and start treatment with hydrocortisone and fludrocortisone pending the results of hormonal tests

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of steroid biosynthesis in the adrenal cortex.
Figure 2: Algorithm for screening newborn babies for CAH.
Figure 3: Nomogram for comparing 17-OHP levels before and 60 min after an intravenous bolus of cosyntropin in individuals with or without 21-hydroxylase deficiency.46

Similar content being viewed by others

Layal Chaker, Salman Razvi, … Robin P. Peeters

References

  1. White, P. C. & Speiser, P. W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 21, 245–291 (2000).

    CAS  PubMed  Google Scholar 

  2. Speiser, P. W. & White, P. C. Congenital adrenal hyperplasia. N. Engl. J. Med. 349, 776–788 (2003).

    Article  CAS  Google Scholar 

  3. Joint LWPES/ESPE CAH Working Group. Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. J. Clin. Endocrinol. Metab. 87, 4048–4053 (2002).

  4. Pang, S. & Shook, M. K. Current status of neonatal screening for congenital adrenal hyperplasia. Curr. Opin. Pediatr. 9, 419–423 (1997).

    Article  CAS  Google Scholar 

  5. Therrell, B. L. Newborn screening for congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 30, 15–30 (2001).

    Article  CAS  Google Scholar 

  6. van der Kamp, H. J. & Wit, J. M. Neonatal screening for congenital adrenal hyperplasia. Eur. J. Endocrinol. 151 (Suppl. 3), U71–U75 (2004).

    Article  CAS  Google Scholar 

  7. Loeber, J. G. Neonatal screening in Europe; the situation in 2004. J. Inherit. Metab. Dis. 30, 430–438 (2007).

    Article  Google Scholar 

  8. Pang, S., Hotchkiss, J., Drash, A. L., Levine, L. S. & New, M. I. Microfilter paper method for 17α-hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 45, 1003–1008 (1977).

    Article  CAS  Google Scholar 

  9. National Newborn Screening Information System 2009. Disorder Report for Congenital Adrenal Hyperplasia (CAH) [online] (2009).

  10. Gonzalez, R. R., Mäentausta, O., Solyom, J. & Vihko, R. Direct solid-phase time-resolved fluoroimmunoassay of 17α-hydroxyprogesterone in serum and dried blood spots on filter paper. Clin. Chem. 36, 1667–1672 (1990).

    CAS  PubMed  Google Scholar 

  11. Olgemoller, B., Roscher, A. A., Liebl, B. & Fingerhut, R. Screening for congenital adrenal hyperplasia: adjustment of 17-hydroxyprogesterone cut-off values to both age and birth weight markedly improves the predictive value. J. Clin. Endocrinol. Metab. 88, 5790–5794 (2003).

    Article  Google Scholar 

  12. Varness, T. S., Allen, D. B. & Hoffman, G. L. Newborn screening for congenital adrenal hyperplasia has reduced sensitivity in girls. J. Pediatr. 147, 493–498 (2005).

    Article  Google Scholar 

  13. al Saedi, S., Dean, H., Dent, W., Stockl, E. & Cronin, C. Screening for congenital adrenal hyperplasia: the Delfia screening test overestimates serum 17-hydroxyprogesterone in preterm infants. Pediatrics 97, 100–102 (1996).

    CAS  PubMed  Google Scholar 

  14. Allen, D. B. et al. Improved precision of newborn screening for congenital adrenal hyperplasia using weight-adjusted criteria for 17-hydroxyprogesterone levels. J. Pediatr. 130, 128–133 (1997).

    Article  CAS  Google Scholar 

  15. Gruñeiro-Papendieck, L. et al. Neonatal screening program for congenital adrenal hyperplasia: adjustments to the recall protocol. Horm. Res. 55, 271–277 (2001).

    PubMed  Google Scholar 

  16. Ohkubo, S., Shimozawa, K., Matsumoto, M. & Kitagawa, T. Analysis of blood spot 17α-hydroxyprogesterone concentration in premature infants—proposal for cutoff limits in screening congenital adrenal hyperplasia. Acta Paediatr. Jpn 34, 126–133 (1992).

    Article  CAS  Google Scholar 

  17. Steigert, M., Schoenle, E. J., Biason-Lauber, A. & Torresani, T. High reliability of neonatal screening for congenital adrenal hyperplasia in Switzerland. J. Clin. Endocrinol. Metab. 87, 4106–4110 (2002).

    Article  CAS  Google Scholar 

  18. van der Kamp, H. J. et al. Cutoff levels of 17-α-hydroxyprogesterone in neonatal screening for congenital adrenal hyperplasia should be based on gestational age rather than on birth weight. J. Clin. Endocrinol. Metab. 90, 3904–3907 (2005).

    Article  CAS  Google Scholar 

  19. van der Kamp, H. J. et al. Newborn screening for congenital adrenal hyperplasia in The Netherlands. Pediatrics 108, 1320–1324 (2001).

    Article  CAS  Google Scholar 

  20. Nomura, S. Immature adrenal steroidogenesis in preterm infants. Early Hum. Dev. 49, 225–233 (1997).

    Article  CAS  Google Scholar 

  21. Wong, T., Shackleton, C. H., Covey, T. R. & Ellis, G. Identification of the steroids in neonatal plasma that interfere with 17α-hydroxyprogesterone radioimmunoassays. Clin. Chem. 38, 1830–1837 (1992).

    CAS  PubMed  Google Scholar 

  22. Lange-Kubini, K., Zachmann, M., Kempken, B. & Torresani, T. 15-β-hydroxylated steroids may be diagnostically misleading in confirming congenital adrenal hyperplasia suspected by a newborn screening programme. Eur. J. Pediatr. 155, 928–931 (1996).

    Article  CAS  Google Scholar 

  23. Crowther, C. A. & Harding, J. E. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for preventing neonatal respiratory disease. Cochrane Database of Systematic Reviews Issue 3. Art. No.: CD003935. doi:10.1002/14651858.CD003935.pub2 (2007).

    Google Scholar 

  24. Gatelais, F. et al. Effect of single and multiple courses of prenatal corticosteroids on 17-hydroxyprogesterone levels: implication for neonatal screening of congenital adrenal hyperplasia. Pediatr. Res. 56, 701–705 (2004).

    Article  CAS  Google Scholar 

  25. King, J. L. et al. Antenatal corticosteroids and newborn screening for congenital adrenal hyperplasia. Arch. Pediatr. Adolesc. Med. 155, 1038–1042 (2001).

    Article  CAS  Google Scholar 

  26. Fitness, J. et al. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 84, 960–966 (1999).

    CAS  PubMed  Google Scholar 

  27. Baumgartner-Parzer, S. M., Nowotny, P., Heinze, G., Waldhäusl, W. & Vierhapper, H. Carrier frequency of congenital adrenal hyperplasia (21-hydroxylase deficiency) in a middle European population. J. Clin. Endocrinol. Metab. 90, 775–778 (2005).

    Article  CAS  Google Scholar 

  28. Kosel, S. et al. Rapid second-tier molecular genetic analysis for congenital adrenal hyperplasia attributable to steroid 21-hydroxylase deficiency. Clin. Chem. 51, 298–304 (2005).

    Article  Google Scholar 

  29. Speiser, P. W. et al. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 37, 650–667 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tajima, T., Fujieda, K., Nakae, J., Mikami, A. & Cutler, G. B. Jr. Mutations of the CYP21 gene in nonclassical steroid 21-hydroxylase deficiency in Japan. Endocr. J. 45, 493–497 (1998).

    Article  CAS  Google Scholar 

  31. Tusie-Luna, M. T., Speiser, P. W., Dumic, M., New, M. I. & White, P. C. A mutation (Pro30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol. Endocrinol. 5, 685–692 (1991).

    Article  CAS  Google Scholar 

  32. Therrell, B. L. Jr et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 101, 583–590 (1998).

    Article  Google Scholar 

  33. Votava, F. et al. Estimation of the false-negative rate in newborn screening for congenital adrenal hyperplasia. Eur. J. Endocrinol. 152, 869–874 (2005).

    Article  CAS  Google Scholar 

  34. Lacey, J. M. et al. Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin. Chem. 50, 621–625 (2004).

    Article  CAS  Google Scholar 

  35. Rauh, M., Gröschl, M., Rascher, W. & Dörr, H. G. Automated, fast and sensitive quantification of 17 α-hydroxy-progesterone, androstenedione and testosterone by tandem mass spectrometry with on-line extraction. Steroids 71, 450–458 (2006).

    Article  CAS  Google Scholar 

  36. Janzen, N. et al. Newborn screening for congenital adrenal hyperplasia: additional steroid profile using liquid chromatography–tandem mass spectrometry. J. Clin. Endocrinol. Metab. 92, 2581–2589 (2007).

    Article  CAS  Google Scholar 

  37. Minutti, C. Z. et al. Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 89, 3687–3693 (2004).

    Article  CAS  Google Scholar 

  38. Matern, D., Tortorelli, S., Oglesbee, D., Gavrilov, D. & Rinaldo, P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004–2007). J. Inherit. Metab. Dis. 30, 585–592 (2007).

    Article  CAS  Google Scholar 

  39. Yang, Y. P., Corley, N. & Garcia-Heras, J. Reverse dot-blot hybridization as an improved tool for the molecular diagnosis of point mutations in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency. Mol. Diagn. 6, 193–199 (2001).

    Article  CAS  Google Scholar 

  40. Sorensen, K. M. et al. Multiplex ligation-dependent probe amplification technique for copy number analysis on small amounts of DNA material. Anal. Chem. doi:10.1021/ac801688c.

  41. Olney, R. C., Mougey, E. B., Wang, J., Shulman, D. I. & Sylvester, J. E. Using real-time, quantitative PCR for rapid genotyping of the steroid 21-hydroxylase gene in a north Florida population. J. Clin. Endocrinol. Metab. 87, 735–741 (2002).

    Article  CAS  Google Scholar 

  42. Nordenstrom, A., Thilén, A., Hagenfeldt, L., Larsson, A. & Wedell, A. Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 84, 1505–1509 (1999).

    CAS  PubMed  Google Scholar 

  43. Krone, N. et al. Multiplex minisequencing of the 21-hydroxylase gene as a rapid strategy to confirm congenital adrenal hyperplasia. Clin. Chem. 48, 818–825 (2002).

    CAS  PubMed  Google Scholar 

  44. Wu, Y. L. et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet. Genome Res. 123, 131–141 (2008).

    Article  CAS  Google Scholar 

  45. Day, D. J. et al. Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees. Hum. Mol. Genet. 5, 2039–2048 (1996).

    Article  CAS  Google Scholar 

  46. New, M. I. et al. Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J. Clin. Endocrinol. Metab. 57, 320–326 (1983).

    Article  CAS  Google Scholar 

  47. Abdu, T. A., Elhadd, T. A., Neary, R. & Clayton, R. N. Comparison of the low dose short synacthen test (1 µg), the conventional dose short synacthen test (250 µg), and the insulin tolerance test for assessment of the hypothalamo–pituitary–adrenal axis in patients with pituitary disease. J. Clin. Endocrinol. Metab. 84, 838–843 (1999).

    CAS  PubMed  Google Scholar 

  48. White, P. C. The endocrinologist's approach to the intersex patient. Adv. Exp. Med. Biol. 511, 107–119 (2002).

    Article  Google Scholar 

  49. Lee, P. A. et al. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics 118, e488–e500 (2006).

    Article  Google Scholar 

  50. Flück, C. E. et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley–Bixler syndrome. Nat. Genet. 36, 228–230 (2004).

    Article  Google Scholar 

  51. Peter, M. et al. A case of 11β-hydroxylase deficiency detected in a newborn screening program by second-tier LC–MS/MS. Horm. Res. 69, 253–256 (2008).

    CAS  PubMed  Google Scholar 

  52. Kushnir, M. M. et al. Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin. Chem. 52, 1559–1567 (2006).

    Article  CAS  Google Scholar 

  53. Balsamo, A. et al. Congenital adrenal hyperplasia: neonatal mass screening compared with clinical diagnosis only in the Emilia-Romagna region of Italy, 1980–1995. Pediatrics 98, 362–367 (1996).

    CAS  PubMed  Google Scholar 

  54. Thil'en, A. et al. Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden. Pediatrics 101, E11 (1998).

    Article  CAS  Google Scholar 

  55. Brosnan, P. G. et al. Effect of newborn screening for congenital adrenal hyperplasia. Arch. Pediatr. Adolesc. Med. 153, 1272–1278 (1999).

    Article  CAS  Google Scholar 

  56. Strnadová, K. A. et al. Prevalence of congenital adrenal hyperplasia among sudden infant death in the Czech Republic and Austria. Eur. J. Pediatr. 166, 1–4 (2007).

    Article  Google Scholar 

  57. Thompson, R., Seargeant, L. & Winter, J. S. Screening for congenital adrenal hyperplasia: distribution of 17α-hydroxyprogesterone concentrations in neonatal blood spot specimens. J. Pediatr. 114, 400–404 (1989).

    Article  CAS  Google Scholar 

  58. Nordenström, A. et al. Female preponderance in congenital adrenal hyperplasia due to CYP21 deficiency in England: implications for neonatal screening. Horm. Res. 63, 22–28 (2005).

    PubMed  Google Scholar 

  59. Thilen, A. & Larsson, A. Congenital adrenal hyperplasia in Sweden 1969–1986: prevalence, symptoms and age at diagnosis. Acta Paediatr. Scand. 79, 168–175 (1990).

    Article  CAS  Google Scholar 

  60. Watson, M. S., Lloyd-Puryear, M. A., Mann, M. Y., Rinaldo, P. & Howell, R. R. (eds) Newborn Screening: Toward a Uniform Screening Panel and System. [online] (2009).

    Google Scholar 

  61. Grosse, S. D. & Van, V. G. How many deaths can be prevented by newborn screening for congenital adrenal hyperplasia? Horm. Res. 67, 284–291 (2007).

    CAS  PubMed  Google Scholar 

  62. Nass, R. & Baker, S. Learning disabilities in children with congenital adrenal hyperplasia. J. Child Neurol. 6, 306–312 (1991).

    Article  CAS  Google Scholar 

  63. Donaldson, M. D. et al. Presentation, acute illness, and learning difficulties in salt-wasting 21-hydroxylase deficiency. Arch. Dis. Child 70, 214–218 (1994).

    Article  CAS  Google Scholar 

  64. Pang, S. Y. et al. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 81, 866–874 (1988).

    CAS  PubMed  Google Scholar 

  65. Carroll, A. E. & Downs, S. M. Comprehensive cost-utility analysis of newborn screening strategies. Pediatrics 117, S287–S295 (2006).

    Article  Google Scholar 

  66. Yoo, B. K. & Grosse, S. D. The cost effectiveness of screening newborns for congenital adrenal hyperplasia. Public Health Genomics 12, 67–72 (2009).

    Article  CAS  Google Scholar 

  67. Gurian, E. A., Kinnamon, D. D., Henry, J. J. & Waisbren, S. E. Expanded newborn screening for biochemical disorders: the effect of a false-positive result. Pediatrics 117, 1915–1921 (2006).

    Article  Google Scholar 

  68. Prosser, L. A., Ladapo, J. A., Rusinak, D. & Waisbren, S. E. Parental tolerance of false-positive newborn screening results. Arch. Pediatr. Adolesc. Med. 162, 870–876 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perrin C. White.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, P. Neonatal screening for congenital adrenal hyperplasia. Nat Rev Endocrinol 5, 490–498 (2009). https://doi.org/10.1038/nrendo.2009.148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing