Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global epidemiology of hyperthyroidism and hypothyroidism

Key Points

  • Thyroid disease is a global health problem that can substantially impact well-being, particularly in pregnancy and childhood.

  • In advanced economies, the prevalence of undiagnosed thyroid disease is falling owing to widespread thyroid function testing and relatively low thresholds for treatment initiation.

  • Iodine nutrition remains a key determinant of thyroid function worldwide, and continued vigilance against the resurgence of iodine deficiency in previously sufficient regions remains essential.

  • More studies are needed in developing countries, especially within Africa, to understand the role of ethnicity and iodine nutrition fluxes in current disease trends.

Abstract

Thyroid hormones are essential for growth, neuronal development, reproduction and regulation of energy metabolism. Hypothyroidism and hyperthyroidism are common conditions with potentially devastating health consequences that affect all populations worldwide. Iodine nutrition is a key determinant of thyroid disease risk; however, other factors, such as ageing, smoking status, genetic susceptibility, ethnicity, endocrine disruptors and the advent of novel therapeutics, including immune checkpoint inhibitors, also influence thyroid disease epidemiology. In the developed world, the prevalence of undiagnosed thyroid disease is likely falling owing to widespread thyroid function testing and relatively low thresholds for treatment initiation. However, continued vigilance against iodine deficiency remains essential in developed countries, particularly in Europe. In this report, we review the global incidence and prevalence of hyperthyroidism and hypothyroidism, highlighting geographical differences and the effect of environmental factors, such as iodine supplementation, on these data. We also highlight the pressing need for detailed epidemiological surveys of thyroid dysfunction and iodine status in developing countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of overt hyperthyroidism prevalence (selective populations used when representative data not available).
Figure 2: Map of overt hypothyroidism prevalence (selective populations used when representative data not available).
Figure 3: Global iodine status and mandatory salt iodization.

Similar content being viewed by others

Layal Chaker, Salman Razvi, … Robin P. Peeters

References

  1. Dumont, J. et al. Ontogeny, anatomy, metabolism and physiology of the thyroid. Thyroid Disease Manager https://www.thyroidmanager.org/chapter/ontogeny-anatomy-metabolism-and-physiology-of-the-thyroid (2011).

    Google Scholar 

  2. De Leo, S., Lee, S. Y. & Braverman, L. E. Hyperthyroidism. Lancet 388, 906–918 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaker, L., Bianco, A. C., Jonklaas, J. & Peeters, R. P. Hypothyroidism. Lancet 390, 1550–1562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rice, S. P., Boregowda, K., Williams, M. T., Morris, G. C. & Okosieme, O. E. A. Welsh-sparing dysphasia. Lancet 382, 1608 (2013).

    Article  PubMed  Google Scholar 

  5. Taylor, P. N. et al. Weekly intramuscular injection of levothyroxine following myxoedema: a practical solution to an old crisis. Case Rep. Endocrinol. 2015, 169194 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Persani, L. Clinical review: Central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J. Clin. Endocrinol. Metab. 97, 3068–3078 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hadlow, N. C. et al. The relationship between TSH and free T4 in a large population is complex and nonlinear and differs by age and sex. J. Clin. Endocrinol. Metab. 98, 2936–2943 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Pearce, S. H. et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid J. 2, 215–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zimmermann, M. B. Iodine deficiency. Endocr. Rev. 30, 376–408 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Vanderpump, M. P. The epidemiology of thyroid disease. Br. Med. Bull. 99, 39–51 (2011).

    Article  PubMed  Google Scholar 

  11. Medici, M. et al. Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 10, e1004123 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Aoki, Y. et al. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999–2002). Thyroid 17, 1211–1223 (2007).

    Article  PubMed  Google Scholar 

  13. Sichieri, R. et al. Low prevalence of hypothyroidism among black and Mulatto people in a population-based study of Brazilian women. Clin. Endocrinol. 66, 803–807 (2007).

    Article  Google Scholar 

  14. De Groot, L. et al. Management of thyroid dysfunction during pregnancy and postpartum: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 2543–2565 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Wiersinga, W. M. Smoking and thyroid. Clin. Endocrinol. 79, 145–151 (2013).

    Article  CAS  Google Scholar 

  16. Wiersinga, W. M. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinol. Metab. 31, 213–222 (2016).

    Article  CAS  Google Scholar 

  17. Preau, L., Fini, J. B., Morvan-Dubois, G. & Demeneix, B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim. Biophys. Acta 1849, 112–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Bulow Pedersen, I. et al. Serum selenium is low in newly diagnosed Graves' disease: a population-based study. Clin. Endocrinol. 79, 584–590 (2013).

    Article  CAS  Google Scholar 

  19. Boelaert, K. et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am. J. Med. 123, 183.e1–183.e9 (2010).

    Article  Google Scholar 

  20. Pierce, M. J., LaFranchi, S. H. & Pinter, J. D. Characterization of thyroid abnormalities in a large cohort of children with Down syndrome. Hormone Res. Paediatr. 87, 170–178 (2017).

    Article  CAS  Google Scholar 

  21. Bartalena, L. et al. Diagnosis and management of amiodarone-induced thyrotoxicosis in Europe: results of an international survey among members of the European Thyroid Association. Clin. Endocrinol. 61, 494–502 (2004).

    Article  Google Scholar 

  22. Shine, B., McKnight, R. F., Leaver, L. & Geddes, J. R. Long-term effects of lithium on renal, thyroid, and parathyroid function: a retrospective analysis of laboratory data. Lancet 386, 461–468 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Laurberg, P. et al. Iodine intake as a determinant of thyroid disorders in populations. Best practice and research. Clin. Endocrinol. Metab. 24, 13–27 (2010).

    CAS  Google Scholar 

  24. Bould, H. et al. Investigation of thyroid dysfunction is more likely in patients with high psychological morbidity. Fam. Pract. 29, 163–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, P. N. et al. Falling threshold for treatment of borderline elevated thyrotropin levels-balancing benefits and risks: evidence from a large community-based study. JAMA Intern. Med. 174, 32–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Garmendia Madariaga, A., Santos Palacios, S., Guillen-Grima, F. & Galofre, J. C. The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J. Clin. Endocrinol. Metab. 99, 923–931 (2014).

    Article  PubMed  CAS  Google Scholar 

  27. Hollowell, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Tunbridge, W. M. et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin. Endocrinol. 7, 481–493 (1977).

    Article  CAS  Google Scholar 

  29. Furszyfer, J., Kurland, L. T., McConahey, W. M. & Elveback, L. R. Graves' disease in Olmsted County, Minnesota, 1935 through 1967. Mayo Clin. Proc. 45, 636–644 (1970).

    CAS  PubMed  Google Scholar 

  30. Vanderpump, M. P. et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. 43, 55–68 (1995).

    Article  CAS  Google Scholar 

  31. Berglund, J., Ericsson, U. B. & Hallengren, B. Increased incidence of thyrotoxicosis in Malmo during the years 1988–1990 as compared to the years 1970–1974. J. Intern. Med. 239, 57–62 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Nystrom, H. F., Jansson, S. & Berg, G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin. Endocrinol. 78, 768–776 (2013).

    Article  Google Scholar 

  33. Knudsen, N. et al. Comparative study of thyroid function and types of thyroid dysfunction in two areas in Denmark with slightly different iodine status. Eur. J. Endocrinol. 143, 485–491 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Bjoro, T. et al. Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected population. The Health Study of Nord-Trondelag (HUNT). Eur. J. Endocrinol. 143, 639–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Konno, N. et al. Screening for thyroid diseases in an iodine sufficient area with sensitive thyrotrophin assays, and serum thyroid autoantibody and urinary iodide determinations. Clin. Endocrinol. 38, 273–281 (1993).

    Article  CAS  Google Scholar 

  36. Walsh, J. P. Managing thyroid disease in general practice. Med. J. Aust. 205, 179–184 (2016).

    Article  PubMed  Google Scholar 

  37. Gopinath, B. et al. Five-year incidence and progression of thyroid dysfunction in an older population. Intern. Med. J. 40, 642–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Laurberg, P., Pedersen, K. M., Vestergaard, H. & Sigurdsson, G. High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area versus high incidence of Graves' disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J. Intern. Med. 229, 415–420 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Laurberg, P. et al. The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur. J. Endocrinol. 155, 219–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Aghini-Lombardi, F. et al. The spectrum of thyroid disorders in an iodine-deficient community: the Pescopagano survey. J. Clin. Endocrinol. Metab. 84, 561–566 (1999).

    CAS  PubMed  Google Scholar 

  41. Du, Y. et al. Iodine deficiency and excess coexist in china and induce thyroid dysfunction and disease: a cross-sectional study. PLOS ONE 9, e111937 (2014).

    Article  CAS  Google Scholar 

  42. Tan, L. et al. Prevalence of thyroid dysfunction with adequate and excessive iodine intake in Hebei Province, People's Republic of China. Public Health Nutr. 18, 1692–1697 (2015).

    Article  PubMed  Google Scholar 

  43. Okosieme, O. E. Impact of iodination on thyroid pathology in Africa. J. R. Soc. Med. 99, 396–401 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogbera, A. O. & Kuku, S. F. Epidemiology of thyroid diseases in Africa. Indian J. Endocrinol. Metabolism 15, S82–S88 (2011).

    Article  Google Scholar 

  45. Muller, G. M., Levitt, N. S. & Louw, S. J. Thyroid dysfunction in the elderly. South Afr. Med. J. 87, 1119–1123 (1997).

    CAS  Google Scholar 

  46. Kalk, W. J. Thyrotoxicosis in urban black Africans: a rising incidence. East Afr. Med. J. 58, 109–116 (1981).

    CAS  PubMed  Google Scholar 

  47. Sarfo-Kantanka, O., Sarfo, F. S., Ansah, E. O. & Kyei, I. Spectrum of Endocrine Disorders in Central Ghana. Int. J. Endocrinol. 2017, 7 (2017).

    Article  Google Scholar 

  48. Sarfo-Kantanka, O., Kyei, I., Sarfo, F. S. & Ansah, E. O. Thyroid Disorders in Central Ghana: The Influence of 20 Years of Iodization. J. Thyroid Res. 2017, 8 (2017).

    Article  Google Scholar 

  49. Biondi, B. & Kahaly, G. J. Cardiovascular involvement in patients with different causes of hyperthyroidism. Nature reviews. Endocrinology 6, 431–443 (2010).

    PubMed  Google Scholar 

  50. Ogbera, A. O., Fasanmade, O. & Adediran, O. Pattern of thyroid disorders in the southwestern region of Nigeria. Ethn. Dis. 17, 327–330 (2007).

    CAS  PubMed  Google Scholar 

  51. Tellez, M., Cooper, J. & Edmonds, C. Graves' ophthalmopathy in relation to cigarette smoking and ethnic origin. Clin. Endocrinol. 36, 291–294 (1992).

    Article  CAS  Google Scholar 

  52. Okinaka, S. et al. The association of periodic paralysis and hyperthyroidism in Japan. J. Clin. Endocrinol. Metab. 17, 1454–1459 (1957).

    Article  CAS  PubMed  Google Scholar 

  53. Kelley, D. E., Gharib, H., Kennedy, F. P., Duda, R. J. Jr & McManis, P. G. Thyrotoxic periodic paralysis. Report of 10 cases and review of electromyographic findings. Arch. Intern. Med. 149, 2597–2600 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Tamai, H. et al. HLA and thyrotoxic periodic paralysis in Japanese patients. J. Clin. Endocrinol. Metab. 64, 1075–1078 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Bartalena, L. & Fatourechi, V. Extrathyroidal manifestations of Graves' disease: a 2014 update. J. Endocrinol. Invest. 37, 691–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Bartalena, L. et al. The phenotype of newly diagnosed Graves' disease in Italy in recent years is milder than in the past: results of a large observational longitudinal study. J. Endocrinol. Invest. 39, 1445–1451 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Perros, P. et al. PREGO (presentation of Graves' orbitopathy) study: changes in referral patterns to European Group On Graves' Orbitopathy (EUGOGO) centres over the period from 2000 to 2012. Br. J. Ophthalmol. 99, 1531–1535 (2015).

    Article  PubMed  Google Scholar 

  58. Vitti, P., Rago, T., Tonacchera, M. & Pinchera, A. Toxic multinodular goiter in the elderly. J. Endocrinol. Invest. 25, 16–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Pearce, E. N., Farwell, A. P. & Braverman, L. E. Thyroiditis. N. Engl. J. Med. 348, 2646–2655 (2003).

    Article  PubMed  Google Scholar 

  60. Nikolai, T. F., Brosseau, J., Kettrick, M. A., Roberts, R. & Beltaos, E. Lymphocytic thyroiditis with spontaneously resolving hyperthyroidism (silent thyroiditis). Arch. Intern. Med. 140, 478–482 (1980).

    Article  CAS  PubMed  Google Scholar 

  61. Ross, D. S. Syndromes of thyrotoxicosis with low radioactive iodine uptake. Endocrinol. Metab. Clin. North Am. 27, 169–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Alexander, E. K. et al. 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 27, 315–389 (2017).

    Article  PubMed  Google Scholar 

  63. Fatourechi, V., Aniszewski, J. P., Fatourechi, G. Z., Atkinson, E. J. & Jacobsen, S. J. Clinical features and outcome of subacute thyroiditis in an incidence cohort: Olmsted County, Minnesota, study. J. Clin. Endocrinol. Metab. 88, 2100–2105 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz, F., Bergmann, N., Zerahn, B. & Faber, J. Incidence rate of symptomatic painless thyroiditis presenting with thyrotoxicosis in Denmark as evaluated by consecutive thyroid scintigraphies. Scand. J. Clin. Lab. Invest. 73, 240–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Vitug, A. C. & Goldman, J. M. Silent (painless) thyroiditis. Evidence of a geographic variation in frequency. Arch. Intern. Med. 145, 473–475 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Schneeberg, N. G. Silent thyroiditis. Arch. Intern. Med. 143, 2214 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Martino, E., Bartalena, L., Bogazzi, F. & Braverman, L. E. The effects of amiodarone on the thyroid. Endocr. Rev. 22, 240–254 (2001).

    CAS  PubMed  Google Scholar 

  68. Bogazzi, F., Tomisti, L., Bartalena, L., Aghini-Lombardi, F. & Martino, E. Amiodarone and the thyroid: a 2012 update. J. Endocrinol. Invest. 35, 340–348 (2012).

    CAS  PubMed  Google Scholar 

  69. Zosin, I. & Balas, M. Amiodarone-induced thyroid dysfunction in an iodine-replete area: epidemiological and clinical data. Endokrynol. Polska 63, 2–9 (2012).

    Google Scholar 

  70. Tsang, W. & Houlden, R. L. Amiodarone-induced thyrotoxicosis: a review. Can. J. Cardiol. 25, 421–424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Uchida, T. et al. Prevalence of amiodarone-induced thyrotoxicosis and associated risk factors in Japanese patients. Int. J. Endocrinol. 2014, 534904 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cukier, P., Santini, F. C., Scaranti, M. & Hoff, A. O. Endocrine side effects of cancer immunotherapy. Endocr. Relat. Cancer 24, T331–T347 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Barroso-Sousa, R. et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 4, 173–182 (2018).

    Article  PubMed  Google Scholar 

  74. Daniels, G. H. et al. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J. Clin. Endocrinol. Metab. 99, 80–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Carle, A., Andersen, S. L., Boelaert, K. & Laurberg, P. Management of endocrine disease: subclinical thyrotoxicosis: prevalence, causes and choice of therapy. Eur. J. Endocrinol. 176, R325–R337 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Vadiveloo, T., Donnan, P. T., Cochrane, L. & Leese, G. P. The Thyroid Epidemiology, Audit, and Research Study (TEARS): the natural history of endogenous subclinical hyperthyroidism. J. Clin. Endocrinol. Metab. 96, E1–E8 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Das, G. et al. Serum thyrotrophin at baseline predicts the natural course of subclinical hyperthyroidism. Clin. Endocrinol. 77, 146–151 (2012).

    Article  CAS  Google Scholar 

  78. Rosario, P. W. Natural history of subclinical hyperthyroidism in elderly patients with TSH between 0.1 and 0.4 mIU/l: a prospective study. Clin. Endocrinol. 72, 685–688 (2010).

    Article  CAS  Google Scholar 

  79. Stanbury, J. B. et al. Iodine-induced hyperthyroidism: occurrence and epidemiology. Thyroid 8, 83–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Roti, E. & Uberti, E. D. Iodine excess and hyperthyroidism. Thyroid 11, 493–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, S. Y. et al. A review: Radiographic iodinated contrast media-induced thyroid dysfunction. J. Clin. Endocrinol. Metab. 100, 376–383 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Cooper, D. S. & Laurberg, P. Hyperthyroidism in pregnancy. Lancet Diabetes Endocrinol. 1, 238–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Korevaar, T. I. M., Medici, M., Visser, T. J. & Peeters, R. P. Thyroid disease in pregnancy: new insights in diagnosis and clinical management. Nat. Rev. Endocrinol. 13, 610–622 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Korelitz, J. J. et al. Prevalence of thyrotoxicosis, antithyroid medication use, and complications among pregnant women in the United States. Thyroid 23, 758–765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Andersen, S. L., Olsen, J., Carle, A. & Laurberg, P. Hyperthyroidism incidence fluctuates widely in and around pregnancy and is at variance with some other autoimmune diseases: a Danish population-based study. J. Clin. Endocrinol. Metab. 100, 1164–1171 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Okosieme, O. E. & Lazarus, J. H. Important considerations in the management of Graves' disease in pregnant women. Expert Rev. Clin. Immunol. 11, 947–957 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Taylor, P. N. & Vaidya, B. Side effects of anti-thyroid drugs and their impact on the choice of treatment for thyrotoxicosis in pregnancy. Eur. Thyroid J. 1, 176–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vaidya, B., Williams, G. R., Abraham, P. & Pearce, S. H. Radioiodine treatment for benign thyroid disorders: results of a nationwide survey of UK endocrinologists. Clin. Endocrinol. 68, 814–820 (2008).

    Article  Google Scholar 

  89. Agboola-Abu, C. F. & Kuku, S. F. Experience in the use of radioactive iodine therapy for hyperthyroidism in Nigerian patients. A study of twenty-two patients. West Afr. J. Med. 22, 324–328 (2003).

    PubMed  Google Scholar 

  90. Bath, S. C., Steer, C. D., Golding, J., Emmett, P. & Rayman, M. P. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet 382, 331–337 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Taylor, P. N., Okosieme, O. E., Dayan, C. M. & Lazarus, J. H. Therapy of endocrine disease: Impact of iodine supplementation in mild-to-moderate iodine deficiency: systematic review and meta-analysis. Eur. J. Endocrinol. 170, R1–R15 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Vanderpump, M. P. et al. Iodine status of UK schoolgirls: a cross-sectional survey. Lancet 377, 2007–2012 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Bath, S., Walter, A., Taylor, A. & Rayman, M. Iodine status of UK women of childbearing age. J. Hum. Nutr. Dietet. 21, 379–380 (2008).

    Article  Google Scholar 

  94. Pearce, E. N. et al. Perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant women. J. Clin. Endocrinol. Metab. 95, 3207–3215 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Lazarus, J. H. & Smyth, P. P. Iodine deficiency in the UK and Ireland. Lancet 372, 888 (2008).

    Article  PubMed  Google Scholar 

  96. Delange, F. Iodine deficiency in Europe anno 2002. Thyroid Int. 5, 3–18 (2002).

    Google Scholar 

  97. Mazzarella, C. et al. Iodine status assessment in Campania (Italy) as determined by urinary iodine excretion. Nutrition 25, 926–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Vitti, P., Delange, F., Pinchera, A., Zimmermann, M. & Dunn, J. T. Europe is iodine deficient. Lancet 361, 1226 (2003).

    Article  PubMed  Google Scholar 

  99. Pearce, E. N., Andersson, M. & Zimmermann, M. B. Global iodine nutrition: where do we stand in 2013? Thyroid 23, 523–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Parle, J. V., Franklyn, J. A., Cross, K. W., Jones, S. C. & Sheppard, M. C. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin. Endocrinol. 34, 77–83 (1991).

    Article  CAS  Google Scholar 

  101. Gussekloo, J. et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA 292, 2591–2599 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Asvold, B. O., Vatten, L. J. & Bjoro, T. Changes in the prevalence of hypothyroidism: the HUNT Study in Norway. Eur. J. Endocrinol. 169, 613–620 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. McGrogan, A., Seaman, H. E., Wright, J. W. & de Vries, C. S. The incidence of autoimmune thyroid disease: a systematic review of the literature. Clin. Endocrinol. 69, 687–696 (2008).

    Article  Google Scholar 

  104. Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Flynn, R. W., MacDonald, T. M., Morris, A. D., Jung, R. T. & Leese, G. P. The thyroid epidemiology, audit, and research study: thyroid dysfunction in the general population. J. Clin. Endocrinol. Metab. 89, 3879–3884 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Valdes, S. et al. Population-based national prevalence of thyroid dysfunction in Spain and associated factors: Di@bet.es study. Thyroid 27, 156–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Sgarbi, J. A., Matsumura, L. K., Kasamatsu, T. S., Ferreira, S. R. & Maciel, R. M. Subclinical thyroid dysfunctions are independent risk factors for mortality in a 7.5-year follow-up: the Japanese-Brazilian thyroid study. Eur. J. Endocrinol. 162, 569–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Kasagi, K. et al. Thyroid function in Japanese adults as assessed by a general health checkup system in relation with thyroid-related antibodies and other clinical parameters. Thyroid 19, 937–944 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Al Shahrani, A. S. et al. The epidemiology of thyroid diseases in the Arab world: a systematic review. J. Public Health Epidemiol. 8, 17–26 (2016).

    Article  Google Scholar 

  110. Amouzegar, A. et al. Natural course of euthyroidism and clues for early diagnosis of thyroid dysfunction: Tehran Thyroid Study. Thyroid 27, 616–625 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Amouzegar, A. et al. The prevalence, incidence and natural course of positive antithyroperoxidase antibodies in a population-based study: Tehran Thyroid Study. PLOS ONE 12, e0169283 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Knudsen, N., Jorgensen, T., Rasmussen, S., Christiansen, E. & Perrild, H. The prevalence of thyroid dysfunction in a population with borderline iodine deficiency. Clin. Endocrinol. 51, 361–367 (1999).

    Article  CAS  Google Scholar 

  113. Okosieme, O. E., Taylor, R. C., Ohwovoriole, A. E., Parkes, A. B. & Lazarus, J. H. Prevalence of thyroid antibodies in Nigerian patients. QJM 100, 107–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Satti, H. et al. High rate of hypothyroidism among patients treated for multidrug-resistant tuberculosis in Lesotho. Int. J. Tuberculosis Lung Dis. 16, 468–472 (2012).

    CAS  Google Scholar 

  115. Munivenkatappa, S. et al. Drug-induced hypothyroidism during anti-tuberculosis treatment of multidrug-resistant tuberculosis: notes from the field. J. Tuberculosis Res. 4, 105–110 (2016).

    Article  CAS  Google Scholar 

  116. Shan, Z. et al. Iodine status and prevalence of thyroid disorders after introduction of mandatory universal salt iodization for 16 years in China: a cross-sectional study in 10 cities. Thyroid 26, 1125–1130 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Teng, W. et al. Effect of iodine intake on thyroid diseases in China. N. Engl. J. Med. 354, 2783–2793 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Unnikrishnan, A. G. et al. Prevalence of hypothyroidism in adults: an epidemiological study in eight cities of India. Indian J. Endocrinol. Metab. 17, 647–652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bagcchi, S. Hypothyroidism in India: more to be done. Lancet Diabetes Endocrinol. 2, 778 (2014).

    Article  PubMed  Google Scholar 

  120. Medici, M., Korevaar, T. I., Visser, W. E., Visser, T. J. & Peeters, R. P. Thyroid function in pregnancy: what is normal? Clin. Chem. 61, 704–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Taylor, P. N., Okosieme, O. E., Premawardhana, L. & Lazarus, J. H. Should all women be screened for thyroid dysfunction in pregnancy? Womens Health 11, 295–307 (2015).

    CAS  Google Scholar 

  122. Krassas, G. E., Poppe, K. & Glinoer, D. Thyroid function and human reproductive health. Endocr. Rev. 31, 702–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Stagnaro-Green, A. et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21, 1081–1125 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhang, Y., Wang, H., Pan, X., Teng, W. & Shan, Z. Patients with subclinical hypothyroidism before 20 weeks of pregnancy have a higher risk of miscarriage: a systematic review and meta-analysis. PLOS ONE 12, e0175708 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Korevaar, T. I. et al. Hypothyroxinemia and TPO-antibody positivity are risk factors for premature delivery: the generation R study. J. Clin. Endocrinol. Metab. 98, 4382–4390 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Lazarus, J. H. et al. Antenatal thyroid screening and childhood cognitive function. N. Engl. J. Med. 366, 493–501 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Casey, B. M. et al. Treatment of subclinical hypothyroidism or hypothyroxinemia in pregnancy. N. Engl. J. Med. 376, 815–825 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dosiou, C. et al. Cost-effectiveness of universal and risk-based screening for autoimmune thyroid disease in pregnant women. J. Clin. Endocrinol. Metab. 97, 1536–1546 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Gruters, A. & Krude, H. Update on the management of congenital hypothyroidism. Horm. Res. 68 (Suppl. 5), 107–111 (2007).

    PubMed  Google Scholar 

  130. Fisher, D. A. Second International Conference on Neonatal Thyroid Screening: progress report. J. Pediatr. 102, 653–654 (1983).

    Article  CAS  PubMed  Google Scholar 

  131. Albert, B. B. et al. Etiology of increasing incidence of congenital hypothyroidism in New Zealand from 1993–2010. J. Clin. Endocrinol. Metab. 97, 3155–3160 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Deladoey, J., Ruel, J., Giguere, Y. & Van Vliet, G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J. Clin. Endocrinol. Metab. 96, 2422–2429 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Ford, G. & LaFranchi, S. H. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract. Res. Clin. Endocrinol. Metab. 28, 175–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Gittoes, N. J. L. & Franklyn, J. A. Drug-induced thyroid disorders. Drug Safety 13, 46–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Martino, E. et al. Environmental iodine intake and thyroid dysfunction during chronic amiodarone therapy. Ann. Intern. Med. 101, 28–34 (1984).

    Article  CAS  PubMed  Google Scholar 

  136. Mahzari, M., Arnaout, A. & Freedman, M. S. Alemtuzumab induced thyroid disease in multiple sclerosis: a review and approach to management. Can. J. Neurol. Sci. 42, 284–291 (2015).

    Article  PubMed  Google Scholar 

  137. Wolter, P. et al. The clinical implications of sunitinib-induced hypothyroidism: a prospective evaluation. Br. J. Cancer 99, 448–454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Markou, K., Georgopoulos, N., Kyriazopoulou, V. & Vagenakis, A. G. Iodine-Induced hypothyroidism. Thyroid 11, 501–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Leung, A. M. et al. Potential risks of excess iodine ingestion and exposure: statement by the american thyroid association public health committee. Thyroid 25, 145–146 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. IGN. Iodine Global Network Annual Report 2016. IGN http://www.ign.org/ (2016).

  141. Dasgupta, P. K., Liu, Y. & Dyke, J. V. Iodine nutrition: iodine content of iodized salt in the United States. Environ. Sci. Technol. 42, 1315–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Premawardhana, L. D. et al. Increased prevalence of thyroglobulin antibodies in Sri Lankan schoolgirls — is iodine the cause? Eur. J. Endocrinol. 143, 185–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Sundick, R. S., Bagchi, N. & Brown, T. R. The role of iodine in thyroid autoimmunity: from chickens to humans: a review. Autoimmunity 13, 61–68 (1992).

    Article  CAS  PubMed  Google Scholar 

  144. Okosieme, O. E. et al. Thyroglobulin epitope recognition in a post iodine-supplemented Sri Lankan population. Clin. Endocrinol. 59, 190–197 (2003).

    Article  CAS  Google Scholar 

  145. Bulow Pedersen, I. et al. A cautious iodization program bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population. Clin. Endocrinol. 75, 120–126 (2011).

    Article  CAS  Google Scholar 

  146. Pedersen, I. B. et al. An increased incidence of overt hypothyroidism after iodine fortification of salt in Denmark: a prospective population study. J. Clin. Endocrinol. Metab. 92, 3122–3127 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Buziak-Bereza, M., Golkowski, F. & Szybinski, Z. Disturbances of thyroid function in adult population of the city of Cracow followed up for ten years observation [Polish]. Przegl. Lek. 62, 676–679 (2005).

    PubMed  Google Scholar 

  148. Laurberg, P. et al. Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J. Clin. Endocrinol. Metab. 83, 765–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Konno, N., Makita, H., Yuri, K., Iizuka, N. & Kawasaki, K. Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan. J. Clin. Endocrinol. Metab. 78, 393–397 (1994).

    CAS  PubMed  Google Scholar 

  150. Hong, A., Stokes, B., Otahal, P., Owens, D. & Burgess, J. R. Temporal trends in thyroid-stimulating hormone (TSH) and thyroid peroxidase antibody (ATPO) testing across two phases of iodine fortification in Tasmania (1995–2013). Clin. Endocrinol. 87, 386–393 (2017).

    Article  CAS  Google Scholar 

  151. Parveen, S., Latif, S. A., Kamal, M. M. & Uddin, M. M. Effects of long term iodized table salt consumption on serum T3, T4 and TSH in an iodine deficient area of Bangladesh. Mymensingh Med. J. 16, 57–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Tammaro, A., Pigliacelli, F., Fumarola, A. & Persechino, S. Trends of thyroid function and autoimmunity to 5 years after the introduction of mandatory iodization in Italy. Eur. Ann. Allergy Clin. Immunol. 48, 77–81 (2016).

    CAS  PubMed  Google Scholar 

  153. Bourdoux, P. P., Ermans, A. M., Mukalay wa Mukalay, A., Filetti, S. & Vigneri, R. Iodine-induced thyrotoxicosis in Kivu, Zaire. Lancet 347, 552–553 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Todd, C. H. et al. Increase in thyrotoxicosis associated with iodine supplements in Zimbabwe. Lancet 346, 1563–1564 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Connolly, R. J. An increase in thyrotoxicosis in southern Tasmania after an increase in dietary iodine. Med. J. Aust. 1, 1268–1271 (1971).

    Article  CAS  PubMed  Google Scholar 

  156. Elnagar, B. et al. The effects of different doses of oral iodized oil on goiter size, urinary iodine, and thyroid-related hormones. J. Clin. Endocrinol. Metab. 80, 891–897 (1995).

    CAS  PubMed  Google Scholar 

  157. Okosieme, O. E. Iodisation in displaced African populations. Lancet 373, 214 (2009).

    Article  PubMed  Google Scholar 

  158. Aakre, I. et al. Development of thyroid dysfunction among women with excessive iodine intake — a 3-year follow-up. J. Trace Elem. Med. Biol. 31, 61–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Marwaha, R. K. et al. Reference range of thyroid hormones in healthy school-age children: country-wide data from India. Clin. Biochem. 43, 51–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Taylor, P. N. et al. Whole-genome sequence-based analysis of thyroid function. Nat. Commun. 6, 5681 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Kus, A. et al. The association of thyroid peroxidase antibody risk loci with susceptibility to and phenotype of Graves' disease. Clin. Endocrinol. 83, 556–562 (2015).

    Article  CAS  Google Scholar 

  162. Meyerovitch, J. et al. Serum thyrotropin measurements in the community. Five-year follow-up in a large network of primary care physicians. Arch. Intern. Med. 167, 1533–1538 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Stott, D. J. et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N. Engl. J. Med. 376, 2534–2544 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Collet, T. H. et al. Thyroid antibody status, subclinical hypothyroidism, and the risk of coronary heart disease: an individual participant data analysis. J. Clin. Endocrinol. Metab. 99, 3353–3362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cooper, D. S. & Biondi, B. Subclinical thyroid disease. Lancet 379, 1142–1154 (2012).

    Article  PubMed  Google Scholar 

  166. Taylor, P. N., Razvi, S., Pearce, S. H. & Dayan, C. M. Clinical review: A review of the clinical consequences of variation in thyroid function within the reference range. J. Clin. Endocrinol. Metab. 98, 3562–3571 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Rieben, C. et al. Subclinical thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies. J. Clin. Endocrinol. Metab. 101, 4945–4954 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Eligar, V., Taylor, P., Okosieme, O., Leese, G. & Dayan, C. Thyroxine replacement: a clinical endocrinologist's viewpoint. Ann. Clin. Biochem. 53, 421–433 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. IGN Iodine Global Network. IGN http://www.ign.org/ (2018).

  170. Vanderpump, M. in Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text (ed. Utiger, R. D. & Braverman, L. E.) 398–496 (JB Lippincott-Raven, 2005).

    Google Scholar 

  171. Schultheiss, U. T. et al. A genetic risk score for thyroid peroxidase antibodies associates with clinical thyroid disease in community-based populations. J. Clin. Endocrinol. Metab. 100, E799–E807 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Marinò, M., Latrofa, F., Menconi, F., Chiovato, L. & Vitti, P. Role of genetic and non-genetic factors in the etiology of Graves' disease. J. Endocrinol. Invest. 38, 283–294 (2015).

    Article  PubMed  CAS  Google Scholar 

  173. Prummel, M. F. & Wiersinga, W. M. Smoking and risk of Graves' disease. JAMA 269, 479–482 (1993).

    Article  CAS  PubMed  Google Scholar 

  174. Nyirenda, M. J., Taylor, P. N., Stoddart, M., Beckett, G. J. & Toft, A. D. Thyroid-stimulating hormone-receptor antibody and thyroid hormone concentrations in smokers versus nonsmokers with Graves disease treated with carbimazole. JAMA 301, 162–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Strieder, T. G., Prummel, M. F., Tijssen, J. G., Endert, E. & Wiersinga, W. M. Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin. Endocrinol. 59, 396–401 (2003).

    Article  Google Scholar 

  176. Belin, R. M., Astor, B. C., Powe, N. R. & Ladenson, P. W. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 89, 6077–6086 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Asvold, B. O., Bjoro, T., Nilsen, T. I. & Vatten, L. J. Tobacco smoking and thyroid function: a population-based study. Arch. Intern. Med. 167, 1428–1432 (2007).

    Article  PubMed  Google Scholar 

  178. Carlé, A. et al. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: a population-based case–control study. Eur. J. Endocrinol. 167, 483–490 (2012).

    Article  PubMed  CAS  Google Scholar 

  179. Tomer, Y. & Davies, T. F. Infection, thyroid disease, and autoimmunity. Endocr. Rev. 14, 107–120 (1993).

    CAS  PubMed  Google Scholar 

  180. Mogensen, E. F. & Green, A. The epidemiology of thyrotoxicosis in Denmark. Incidence and geographical variation in the Funen region 1972–1974. Acta Med. Scand. 208, 183–186 (1980).

    Article  CAS  PubMed  Google Scholar 

  181. Berglund, J., Christensen, S. B. & Hallengren, B. Total and age-specific incidence of Graves' thyrotoxicosis, toxic nodular goitre and solitary toxic adenoma in Malmo 1970–1974. J. Intern. Med. 227, 137–141 (1990).

    Article  CAS  PubMed  Google Scholar 

  182. Galofre, J. C. et al. Incidence of different forms of thyroid dysfunction and its degrees in an iodine sufficient area. Thyroidology 6, 49–54 (1994).

    CAS  PubMed  Google Scholar 

  183. Volzke, H. et al. The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area. Thyroid 13, 803–810 (2003).

    Article  PubMed  CAS  Google Scholar 

  184. O'Leary, P. C. et al. Investigations of thyroid hormones and antibodies based on a community health survey: the Busselton thyroid study. Clin. Endocrinol. 64, 97–104 (2006).

    Article  CAS  Google Scholar 

  185. Leese, G. P. et al. Increasing prevalence and incidence of thyroid disease in Tayside, Scotland: the Thyroid Epidemiology Audit and Research Study (TEARS). Clin. Endocrinol. 68, 311–316 (2008).

    CAS  Google Scholar 

  186. Lucas, A. et al. Undiagnosed thyroid dysfunction, thyroid antibodies, and iodine excretion in a Mediterranean population. Endocr 38, 391–396 (2010).

    Article  CAS  Google Scholar 

  187. Delshad, H., Mehran, L., Tohidi, M., Assadi, M. & Azizi, F. The incidence of thyroid function abnormalities & natural course of subclinical thyroid disorders, Tehran, I. R. Iran. J. Endocrinol. Invest. 35, 516–521 (2012).

    CAS  PubMed  Google Scholar 

  188. Sriphrapradang, C. et al. Reference ranges of serum TSH, FT4 and thyroid autoantibodies in the Thai population: the national health examination survey. Clin. Endocrinol. 80, 751–756 (2014).

    Article  CAS  Google Scholar 

  189. Hoogendoorn, E. H. et al. Thyroid function and prevalence of anti-thyroperoxidase antibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin. Chem. 52, 104–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Marwaha, R. K. et al. The evolution of thyroid function with puberty. Clin. Endocrinol. 76, 899–904 (2012).

    Article  CAS  Google Scholar 

  191. Laurberg, P., Bulow Pedersen, I., Pedersen, K. M. & Vestergaard, H. Low incidence rate of overt hypothyroidism compared with hyperthyroidism in an area with moderately low iodine intake. Thyroid 9, 33–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Galofre, J. C., Fernandez-Calvet, L., Rios, M. & Garcia-Mayor, R. V. Increased incidence of thyrotoxicosis after iodine supplementation in an iodine sufficient area. J. Endocrinol. Invest. 17, 23–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  193. Yang, F. et al. Epidemiological survey on the relationship between different iodine intakes and the prevalence of hyperthyroidism. Eur. J. Endocrinol. 146, 613–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Golkowski, F. et al. Increased prevalence of hyperthyroidism as an early and transient side-effect of implementing iodine prophylaxis. Public Health Nutr. 10, 799–802 (2007).

    Article  PubMed  Google Scholar 

  195. Heydarian, P., Ordookhani, A. & Azizi, F. Goiter rate, serum thyrotropin, thyroid autoantibodies and urinary iodine concentration in Tehranian adults before and after national salt iodization. J. Endocrinol. Invest. 30, 404–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Cerqueira, C. et al. Doubling in the use of thyroid hormone replacement therapy in Denmark: association to iodization of salt? Eur. J. Epidemiol. 26, 629–635 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Aghini Lombardi, F. et al. The effect of voluntary iodine prophylaxis in a small rural community: the Pescopagano survey 15 years later. J. Clin. Endocrinol. Metab. 98, 1031–1039 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.N.T., D.A., A.S., G.G. and O.E.O. researched data for the article, made substantial contributions to discussion of content, wrote the article and reviewed and/or edited the manuscript before submission. C.M.D. and J.H.L. made substantial contributions to discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peter N. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Thyrotoxicosis

The clinical state that results from too much thyroid hormone in the body. In the overwhelming majority of cases, this is due to excess production from the thyroid gland (hyperthyroidism).

Silent thyroiditis

A self-limiting subacute disorder that results in temporary hyperthyroidism, usually followed by a brief period of hypothyroidism and then recovery of normal thyroid function. It most commonly occurs in females in the post-partum period.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, P., Albrecht, D., Scholz, A. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14, 301–316 (2018). https://doi.org/10.1038/nrendo.2018.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2018.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing