Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells

Abstract

Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21: 2683–2710.

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, McKay RM, Parada LF . Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149: 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9: 391–403.

    Article  CAS  PubMed  Google Scholar 

  4. Sell S . Cancer stem cells and differentiation therapy. Tumour Biol 2006; 27: 59–70.

    Article  PubMed  Google Scholar 

  5. Zhang J, Yang PL, Gray NS . Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009; 9: 28–39.

    Article  PubMed  Google Scholar 

  6. Kadomatsu K, Muramatsu T . Midkine and pleiotrophin in neural development and cancer. Cancer Lett 2004; 204: 127–143.

    Article  CAS  PubMed  Google Scholar 

  7. Palmer RH, Vernersson E, Grabbe C, Hallberg B . Anaplastic lymphoma kinase: signalling in development and disease. Biochem J 2009; 420: 345–361.

    Article  CAS  PubMed  Google Scholar 

  8. Turner SD, Alexander DR . What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis? Leukemia 2005; 19: 1128–1134.

    Article  CAS  PubMed  Google Scholar 

  9. Camidge DR, Doebele RC . Treating ALK-positive lung cancer–early successes and future challenges. Nat Rev Clin Oncol 2012; 9: 268–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gandhi L, Janne PA . Crizotinib for ALK-rearranged non-small cell lung cancer: a new targeted therapy for a new target. Clin Cancer Res 2012; 18: 3737–3742.

    Article  CAS  PubMed  Google Scholar 

  11. Stylianou DC, Auf der Maur A, Kodack DP, Henke RT, Hohn S, Toretsky JA et al. Effect of single-chain antibody targeting of the ligand-binding domain in the anaplastic lymphoma kinase receptor. Oncogene 2009; 28: 3296–3306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan H, Corbi N, Basilico C, Dailey L . Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 1995; 9: 2635–2645.

    Article  CAS  PubMed  Google Scholar 

  13. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R . Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003; 17: 126–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sarkar A, Hochedlinger K . The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013; 12: 15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Episkopou V . SOX2 functions in adult neural stem cells. Trends Neurosci 2005; 28: 219–221.

    Article  CAS  PubMed  Google Scholar 

  16. Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer 2007; 96: 1293–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009; 27: 40–48.

    Article  CAS  PubMed  Google Scholar 

  18. Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J et al. Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 2010; 70: 2030–2040.

    Article  CAS  PubMed  Google Scholar 

  19. Koyama-Nasu R, Nasu-Nishimura Y, Todo T, Ino Y, Saito N, Aburatani H et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene 2013; 32: 3840–3845.

    Article  CAS  PubMed  Google Scholar 

  20. Mizrak D, Brittan M, Alison M . CD133: molecule of the moment. J Pathol 2008; 214: 3–9.

    Article  CAS  PubMed  Google Scholar 

  21. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  22. Wurdak H, Zhu S, Romero A, Lorger M, Watson J, Chiang CY et al. An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation. Cell Stem Cell 2010; 6: 37–47.

    Article  CAS  PubMed  Google Scholar 

  23. Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A . Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 2002; 277: 14153–14158.

    Article  CAS  PubMed  Google Scholar 

  24. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raetz EA, Perkins SL, Carlson MA, Schooler KP, Carroll WL, Virshup DM . The nucleophosmin-anaplastic lymphoma kinase fusion protein induces c-Myc expression in pediatric anaplastic large cell lymphomas. Am J Pathol 2002; 161: 875–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010; 143: 313–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  29. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  31. Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 2011; 30: 3454–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carpenter EL, Mosse YP, Targeting ALK . in neuroblastoma–preclinical and clinical advancements. Nat Rev Clin Oncol 2012; 9: 391–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dirks WG, Fahnrich S, Lis Y, Becker E, MacLeod RA, Drexler HG . Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int J Cancer 2002; 100: 49–56.

    Article  CAS  PubMed  Google Scholar 

  34. Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M et al. Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA 2000; 97: 2603–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H . Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem 1994; 269: 12999–13004.

    CAS  PubMed  Google Scholar 

  36. Perez-Pinera P, Chang Y, Deuel TF . Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts. Cell Cycle 2007; 6: 2877–2883.

    Article  CAS  PubMed  Google Scholar 

  37. Bernhardt M, Galach M, Novak D, Utikal J . Mediators of induced pluripotency and their role in cancer cells—current scientific knowledge and future perspectives. Biotechnol J 2012; 7: 810–821.

    Article  CAS  PubMed  Google Scholar 

  38. Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L et al. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One 2012; 7: e36326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31: 1354–1365.

    Article  CAS  PubMed  Google Scholar 

  40. Kondo T, Raff M . Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 2004; 18: 2963–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferri AL, Cavallaro M, Braid D, Di Cristofano A, Canta A, Vezzani A et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004; 131: 3805–3819.

    Article  CAS  PubMed  Google Scholar 

  42. Cavallaro M, Mariani J, Lancini C, Latorre E, Caccia R, Gull F et al. Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 2008; 135: 541–557.

    Article  CAS  PubMed  Google Scholar 

  43. McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 2008; 68: 3389–3395.

    CAS  PubMed  Google Scholar 

  44. Amet LE, Lauri SE, Hienola A, Croll SD, Lu Y, Levorse JM et al. Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule. Mol Cell Neurosci 2001; 17: 1014–1024.

    Article  CAS  PubMed  Google Scholar 

  45. Hienola A, Pekkanen M, Raulo E, Vanttola P, Rauvala H . HB-GAM inhibits proliferation and enhances differentiation of neural stem cells. Mol Cell Neurosci 2004; 26: 75–88.

    Article  CAS  PubMed  Google Scholar 

  46. Melosky B . Supportive care treatments for toxicities of anti-egfr and other targeted agents. Curr Oncol 2012; 19: S59–S63.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM . Systematic determination of genetic network architecture. Nat Genet 1999; 22: 281–285.

    Article  CAS  PubMed  Google Scholar 

  49. Parikh JR, Klinger B, Xia Y, Marto JA, Bluthgen N . Discovering causal signaling pathways through gene-expression patterns. Nucleic Acids Res 2010; 38: W109–W117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005; 25: 6031–6046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Program of Innovative Cell Biology by Innovative Technology (Integrated Systems Analysis of Cellular Oncogenic Signaling Networks), Grants-in-Aid for Scientific Research on Innovative Areas (Integrative Research on Cancer Microenvironment Network), Takeda Science Foundation and, in part, by Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Akiyama.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama-Nasu, R., Haruta, R., Nasu-Nishimura, Y. et al. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. Oncogene 33, 2236–2244 (2014). https://doi.org/10.1038/onc.2013.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.168

Keywords

This article is cited by

Search

Quick links