Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MMP7-mediated cleavage of nucleolin at Asp255 induces MMP9 expression to promote tumor malignancy

A Corrigendum to this article was published on 01 August 2016

Abstract

Nucleolin (NCL) participates in DNA transcription, ribosomal biogenesis and the regulation of RNA stability. However, the contribution of NCL to tumor development is still not clear. Herein, we found that NCL expression correlated with poor prognosis in lung cancer patients. Overexpressed NCL was predominantly cleaved to C-terminal truncated NCL (TNCL). In lung cancer formation, activation of the epidermal growth factor receptor pathway induced NCL expression, and also the expression of matrix metalloproteinase (MMP) 7, which then cleaved NCL at Asp255 to generate TNCL of 55 kDa. TNCL increased the expression of several oncogenes, including MMP9, anaplastic lymphoma kinase (ALK), HIF1a and CBLB, and decreased the expression of tumor suppressors including BRD4, PCM1, TFG and KLF6 by modulating mRNA stability through binding to the 3’-untranslated regions of their transcripts, thus ultimately enhancing metastasis activity. In conclusion, this study identified a novel role of the cleavage form of NCL generated by MMP7 in stabilizing MMP9 mRNA. We also provide a new insight that MMP7 not only cleaves the extracellular matrix to promote tumor invasion but also cleaves NCL, which augment oncogenesis. Blocking NCL cleavage may provide a useful new strategy for lung cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Roger B, Moisand A, Amalric F, Bouvet P . Nucleolin provides a link between RNA polymerase I transcription and pre-ribosome assembly. Chromosoma 2003; 111: 399–407.

    Article  CAS  Google Scholar 

  2. Sengupta TK, Bandyopadhyay S, Fernandes DJ, Spicer EK . Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization. J Biol Chem 2004; 279: 10855–10863.

    Article  CAS  Google Scholar 

  3. Serin G, Joseph G, Faucher C, Ghisolfi L, Bouche G, Amalric F et al. Localization of nucleolin binding sites on human and mouse pre-ribosomal RNA. Biochimie 1996; 78: 530–538.

    Article  CAS  Google Scholar 

  4. Abdelmohsen K, Tominaga K, Lee EK, Srikantan S, Kang MJ, Kim MM et al. Enhanced translation by nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. Nucleic Acids Res 2011; 39: 8513–8530.

    Article  CAS  Google Scholar 

  5. Bouvet P, Diaz JJ, Kindbeiter K, Madjar JJ, Amalric F . Nucleolin interacts with several ribosomal proteins through its RGG domain. J Biol Chem 1998; 273: 19025–19029.

    Article  CAS  Google Scholar 

  6. Tripathi M, Potdar AA, Yamashita H, Weidow B, Cummings PT, Kirchhofer D et al. Laminin-332 cleavage by matriptase alters motility parameters of prostate cancer cells. Prostate 2011; 71: 184–196.

    Article  CAS  Google Scholar 

  7. Kryczka J, Stasiak M, Dziki L, Mik M, Dziki A, Cierniewski C . Matrix metalloproteinase-2 cleavage of the beta1 integrin ectodomain facilitates colon cancer cell motility. J Biol Chem 2012; 287: 36556–36566.

    Article  CAS  Google Scholar 

  8. Rosebeck S, Madden L, Jin X, Gu S, Apel IJ, Appert A et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 2011; 331: 468–472.

    Article  CAS  Google Scholar 

  9. Pasternack MS, Bleier KJ, McInerney TN . Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 1991; 266: 14703–14708.

    CAS  PubMed  Google Scholar 

  10. Kito S, Shimizu K, Okamura H, Yoshida K, Morimoto H, Fujita M et al. Cleavage of nucleolin and argyrophilic nucleolar organizer region associated proteins in apoptosis-induced cells. Biochem Biophys Res Commun 2003; 300: 950–956.

    Article  CAS  Google Scholar 

  11. Kito S, Morimoto Y, Tanaka T, Haneji T, Ohba T . Cleavage of nucleolin and AgNOR proteins during apoptosis induced by anticancer drugs in human salivary gland cells. J Oral Pathol Med 2005; 34: 478–485.

    Article  CAS  Google Scholar 

  12. Fang SH, Yeh NH . The self-cleaving activity of nucleolin determines its molecular dynamics in relation to cell proliferation. Exp Cell Res 1993; 208: 48–53.

    Article  CAS  Google Scholar 

  13. Aihara R, Mochiki E, Nakabayashi T, Akazawa K, Asao T, Kuwano H . Clinical significance of mucin phenotype, beta-catenin and matrix metalloproteinase7 in early undifferentiated gastric carcinoma. Br J Surg 2005; 92: 454–462.

    Article  CAS  Google Scholar 

  14. Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K . Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 1999; 45: 252–258.

    Article  CAS  Google Scholar 

  15. Yamamoto H, Itoh F, Iku S, Adachi Y, Fukushima H, Sasaki S et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinasesin human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression. J Clin Oncol 2001; 19: 1118–1127.

    Article  CAS  Google Scholar 

  16. Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I . Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 2001; 61: 577–581.

    CAS  PubMed  Google Scholar 

  17. Tsunezumi J, Higashi S, Miyazaki K . Matrilysin (MMP-7) cleaves C-type lectin domain family 3 member A (CLEC3A) on tumor cell surface and modulates its cell adhesion activity. J Cell Biochem 2009; 106: 693–702.

    Article  CAS  Google Scholar 

  18. Davies G, Jiang WG, Mason MD . Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin Cancer Res 2001; 7: 3289–3297.

    CAS  Google Scholar 

  19. Mongelard F, Bouvet P . Nucleolin: a multiFACeTed protein. Trends Cell Biol 2007; 17: 80–86.

    Article  CAS  Google Scholar 

  20. Hsu TI, Wang MC, Chen SY, Yeh YM, Su WC, Chang WC et al. Sp1 expression regulates lung tumor progression. Oncogene 2012; 31: 3973–3988.

    Article  CAS  Google Scholar 

  21. Chang WC, Hung JJ . Functional role of post-translational modifications of Sp1 in tumorigenesis. J Biol Sci 2012; 19: 94.

    CAS  Google Scholar 

  22. Zhang X, Wang W, Wang H, Wang MH, Xu W, Zhang R . Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 2013; 32: 2782–2791.

    Article  CAS  Google Scholar 

  23. Wang S, Huang J, He J, Wang A, Xu S, Huang SF et al. RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centrosome integrity. Neoplasia 2010; 12: 284–293.

    Article  CAS  Google Scholar 

  24. Warrener P, Petryshyn R . Phosphorylation and proteolytic degradation of nucleolin from 3T3-F442A cells. Biochem Biophys Res Commun 1991; 180: 716–723.

    Article  CAS  Google Scholar 

  25. Yamamoto K, Miyazaki K, Higashi S . Cholesterol sulfate alters substrate preference of matrix metalloproteinase-7 and promotes degradations of pericellular laminin-332 and fibronectin. J Biol Chem 2010; 285: 28862–28873.

    Article  CAS  Google Scholar 

  26. Remy L, Trespeuch C, Bachy S, Scoazec JY, Rousselle P . Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 beta3 chain. Cancer Res 2006; 66: 11228–11237.

    Article  CAS  Google Scholar 

  27. Herrero R, Kajikawa O, Matute-Bello G, Wang Y, Hagimoto N, Mongovin S et al. The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region. J Clin Invest 2011; 121: 1174–1190.

    Article  CAS  Google Scholar 

  28. Williams H, Johnson JL, Jackson CL, White SJ, George SJ . MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res 2010; 87: 137–146.

    Article  CAS  Google Scholar 

  29. von Bredow DC, Nagle RB, Bowden GT, Cress AE . Cleavage of beta 4 integrin by matrilysin. Exp Cell Res 1997; 236: 341–345.

    Article  CAS  Google Scholar 

  30. Joo EJ, Yang H, Park Y, Park NY, Toida T, Linhardt RJ et al. Induction of nucleolin translocation by acharan sulfate in A549 human lung adenocarcinoma. J Cell Biochem 2010; 110: 1272–1278.

    Article  CAS  Google Scholar 

  31. Dozier S, Escobar GP, Lindsey ML . Matrix metalloproteinase (MMP)-7 activates MMP-8 but not MMP-13. Med Chem 2006; 2: 523–526.

    Article  CAS  Google Scholar 

  32. Overall CM, Lopez-Otin C . Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews Cancer 2002; 2: 657–672.

    Article  CAS  Google Scholar 

  33. Camidge DR, Doebele RC . Treating ALK-positive lung cancer—early successes and future challenges. Nat Rev Clin Oncol 2012; 9: 268–277.

    Article  CAS  Google Scholar 

  34. Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005; 11: 623–629.

    Article  CAS  Google Scholar 

  35. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J . Nucleophosmin-anaplastic lymphoma kinaseassociated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000; 96: 4319–4327.

    CAS  PubMed  Google Scholar 

  36. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 2007; 67: 4408–4417.

    Article  CAS  Google Scholar 

  37. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J et al. MIF signal transduction initiated by binding to CD74. J Exp Med 2003; 197: 1467–1476.

    Article  CAS  Google Scholar 

  38. McClelland M, Zhao L, Carskadon S, Arenberg D . Expression of CD74, the receptor for macrophage migration inhibitory factor, in non-small cell lung cancer. Am J Pathol 2009; 174: 638–646.

    Article  CAS  Google Scholar 

  39. Komiya T, Coxon A, Park Y, Chen WD, Zajac-Kaye M, Meltzer P et al. Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene 2010; 29: 1672–1680.

    Article  CAS  Google Scholar 

  40. Feng Y, Wang Y, Wang Z, Fang Z, Li F, Gao Y et al. The CRTC1-NEDD9 signaling axis mediates lung cancer progression caused by LKB1 loss. Cancer Res 2012; 72: 6502–6511.

    Article  CAS  Google Scholar 

  41. Nishimura Y, Komatsu S, Ichikawa D, Nagata H, Hirajima S, Takeshita H et al. Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. Br J Cancer 2013; 108: 1324–1331.

    Article  CAS  Google Scholar 

  42. Curtin JF, Cotter TG . JNK regulates HIPK3 expression and promotes resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells. J Biol Chem 2004; 279: 17090–17100.

    Article  CAS  Google Scholar 

  43. Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA 2013; 110: E1026–E1034.

    Article  CAS  Google Scholar 

  44. Hsu TI, Wang MC, Chen SY, Huang ST, Yeh YM, Su WC et al. Betulinic acid decreases specificity protein 1 (Sp1) level via increasing the sumoylation of sp1 to inhibit lung cancer growth. Mol Pharmacol 2012; 82: 1115–1128.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cheng-Kung University project of the Program for Promoting Academic Excellence and Developing World Class Research Centers, together with grants 100-2320-B-038-032-MY3 and NSC101-2321-B-006-004-MY3 obtained from the National Science Council, Taiwan. This work was also supported by the Food and Drug Administration, Ministry of Health and Welfare, Executive Yuan, Taiwan (Grants DOH102-TD-TB-111-NSC101). This research received funding from the Headquarters of University Advancement at the National Cheng-Kung University, which is sponsored by the Ministry of Education, Taiwan. We are grateful for the support from the Tissue Bank, Research Center of Clinical Medicine, National Cheng-Kung University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-J Hung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, TI., Lin, SC., Lu, PS. et al. MMP7-mediated cleavage of nucleolin at Asp255 induces MMP9 expression to promote tumor malignancy. Oncogene 34, 826–837 (2015). https://doi.org/10.1038/onc.2014.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.22

This article is cited by

Search

Quick links