1887

Abstract

The principal virulence factor of is capsular polysaccharide, and encapsulated pneumococci are more common causes of disease than unencapsulated strains. This study analysed the presence of capsular genes in 59 pneumococcal isolates using two PCR methods targeted at the and genes of the capsular biosynthesis locus. The PCR method targeted at the gene, reported to be essential for encapsulation, was developed in this study. Of 59 pneumococcal isolates, 49 (83 %) were obtained from the sputum samples of elderly patients (≥65 years) with community-acquired pneumonia (CAP) and 10 (17 %) were from those with other acute lower respiratory tract infections (ARIs). Forty (82 %) of the CAP isolates and two (20 %) of the ARI isolates were encapsulated, as assessed by conventional immunochemical methods. Forty-one (98 %) of the 42 encapsulated strains had the gene present, and in 38 strains the gene was also detected. One of the unencapsulated isolates gave a positive result for the gene, and neither of the capsular locus genes were present in all the other unencapsulated strains. The distribution of encapsulated and unencapsulated isolates differed significantly between the two patient groups regardless of whether the presence of capsule was determined immunochemically (<0.001) or by PCR (=0.002). The PCR developed here was found to be a rapid and reliable method to detect the pneumococcal capsule locus and may have potential in sputum diagnostics when investigating the pneumococcal aetiology of CAP.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.016956-0
2010-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/10/1140.html?itemId=/content/journal/jmm/10.1099/jmm.0.016956-0&mimeType=html&fmt=ahah

References

  1. Abdeldaim G., Herrmann B., Korsgaard J., Olcen P., Blomberg J., Stralin K. 2009; Is quantitative PCR for the pneumolysin ( ply ) gene useful for detection of pneumococcal lower respiratory tract infection?. Clin Microbiol Infect 15:565–570 [CrossRef]
    [Google Scholar]
  2. Bentley S. D., Aanensen D. M., Mavroidi A., Saunders D., Rabbinowitsch E., Collins M., Donohoe K., Harris D., Murphy L. other authors 2006; Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2:e31 [CrossRef]
    [Google Scholar]
  3. Cardozo D. M. 2008; Prevalence and risk factors for nasopharyngeal carriage of Streptococcus pneumoniae among adolescents. J Med Microbiol 57:185–189 [CrossRef]
    [Google Scholar]
  4. File T. M. 2003; Community-acquired pneumonia. Lancet 362:1991–2001 [CrossRef]
    [Google Scholar]
  5. García-Vázquez E., Marcos M. A., Mensa J., de Roux A., Puig J., Font C., Francisco G., Torres A. 2004; Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system. Arch Intern Med 164:1807–1811 [CrossRef]
    [Google Scholar]
  6. Gillespie S. H., McWhinney P. H., Patel S., Raynes J. G., McAdam K. P., Whiley R. A., Hardie J. M. 1993; Species of alpha-hemolytic streptococci possessing a C-polysaccharide phosphorylcholine-containing antigen. Infect Immun 61:3076–3077
    [Google Scholar]
  7. Hammerschmidt S., Wolff S., Hocke A., Rosseau S., Müller E., Rohde M. 2005; Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73:4653–4667 [CrossRef]
    [Google Scholar]
  8. Hanage W. P., Kaijalainen T., Saukkoriipi A., Rickcord J. L., Spratt B. G. 2006; A successful, diverse disease-associated lineage of nontypeable pneumococci that has lost the capsular biosynthesis locus. J Clin Microbiol 44:743–749 [CrossRef]
    [Google Scholar]
  9. Henrichsen J. 1995; Six newly recognized types of Streptococcus pneumoniae . J Clin Microbiol 33:2759–2762
    [Google Scholar]
  10. Holmberg H., Danielsson D., Hardie J., Krook A., Whiley R. 1985; Cross-reactions between alpha-streptococci and Omniserum, a polyvalent pneumococcal serum, demonstrated by direct immunofluorescence, immunoelectroosmophoresis, and latex agglutination. J Clin Microbiol 21:745–748
    [Google Scholar]
  11. Jin P., Kong F., Xiao M., Oftadeh S., Zhou F., Liu C., Russell F., Gilbert G. L. 2009; First report of putative Streptococcus pneumoniae serotype 6D among nasopharyngeal isolates from Fijian children. J Infect Dis 200:1375–1380 [CrossRef]
    [Google Scholar]
  12. Kaijalainen T., Rintamäki S., Herva E., Leinonen M. 2002; Evaluation of gene-technological and conventional methods in the identification of Streptococcus pneumoniae . J Microbiol Methods 51:111–118 [CrossRef]
    [Google Scholar]
  13. Kilpi T., Herva E., Kaijalainen T., Syrjänen R., Takala A. K. 2001; Bacteriology of acute otitis media in a cohort of Finnish children followed for the first two years of life. Pediatr Infect Dis J 20:654–662 [CrossRef]
    [Google Scholar]
  14. Kim J. O., Weiser J. N. 1998; Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae . J Infect Dis 177:368–377 [CrossRef]
    [Google Scholar]
  15. Kong F., Gilbert G. L. 2003; Using cpsA - cpsB sequence polymorphisms and serotype-/group-specific PCR to predict 51 Streptococcus pneumoniae capsular serotypes. J Med Microbiol 52:1047–1058 [CrossRef]
    [Google Scholar]
  16. Kuijper E. J., van der Meer J., de Jong M. D., Speelman P., Dankert J. 2003; Usefulness of Gram stain for diagnosis of lower respiratory tract infection or urinary tract infection and as an aid in guiding treatment. Eur J Clin Microbiol Infect Dis 22:228–234
    [Google Scholar]
  17. Lawrence E. R., Arias C. A., Duke B., Beste D., Broughton K., Efstratiou A., George R. C., Hall L. M. 2000; Evaluation of serotype prediction by cpsA - cpsB gene polymorphism in Streptococcus pneumoniae . J Clin Microbiol 38:1319–1323
    [Google Scholar]
  18. Morona J. K., Paton J. C., Miller D. C., Morona R. 2000; Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae . Mol Microbiol 35:1431–1442
    [Google Scholar]
  19. Morona J. K., Morona R., Miller D. C., Paton J. C. 2002; Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184:577–583 [CrossRef]
    [Google Scholar]
  20. Morona J. K., Miller D. C., Morona R., Paton J. C. 2004; The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA , cpsB , and cpsD have on virulence of Streptococcus pneumoniae . J Infect Dis 189:1905–1913 [CrossRef]
    [Google Scholar]
  21. Pai R., Gertz R. E., Beall B. 2006; Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol 44:124–131 [CrossRef]
    [Google Scholar]
  22. Park I. H., Park S., Hollingshead S. K., Nahm M. H. 2007a; Genetic basis for the new pneumococcal serotype, 6C. Infect Immun 75:4482–4489 [CrossRef]
    [Google Scholar]
  23. Park I. H., Pritchard D. G., Cartee R., Brandao A., Brandileone M. C., Nahm M. H. 2007b; Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae . J Clin Microbiol 45:1225–1233 [CrossRef]
    [Google Scholar]
  24. Rosón B., Carratala J., Verdaguer R., Dorca J., Manresa F., Gudiol F. 2000; Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization. Clin Infect Dis 31:869–874 [CrossRef]
    [Google Scholar]
  25. Sheppard C. L., Harrison T. G., Morris R., Hogan A., George R. C. 2004; Autolysin-targeted LightCycler assay including internal process control for detection of Streptococcus pneumoniae DNA in clinical samples. J Med Microbiol 53:189–195 [CrossRef]
    [Google Scholar]
  26. Smith M. D., Sheppard C. L., Hogan A., Harrison T. G., Dance D. A., Derrington P., George R. C. 2009; Diagnosis of Streptococcus pneumoniae infections in adults with bacteremia and community-acquired pneumonia: clinical comparison of pneumococcal PCR and urinary antigen detection. J Clin Microbiol 47:1046–1049 [CrossRef]
    [Google Scholar]
  27. Sottile M. I., Rytel M. W. 1975; Application of counterimmunoelectrophoresis in the identification of Streptococcus pneumoniae in clinical isolates. J Clin Microbiol 2:173–177
    [Google Scholar]
  28. Syrjänen R. K., Kilpi T. M., Kaijalainen T. H., Herva E. E., Takala A. K. 2001; Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J Infect Dis 184:451–459 [CrossRef]
    [Google Scholar]
  29. Tarragó D., Fenoll A., Sánchez-Tatay D., Arroyo L. A., Muñoz-Almagro C., Esteva C., Hausdorff W. P., Casal J., Obando I. 2008; Identification of pneumococcal serotypes from culture-negative clinical specimens by novel real-time PCR. Clin Microbiol Infect 14:828–834 [CrossRef]
    [Google Scholar]
  30. Theerthakarai R., El-Halees W., Ismail M., Solis R. A., Khan M. A. 2001; Nonvalue of the initial microbiological studies in the management of nonsevere community-acquired pneumonia. Chest 119:181–184 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.016956-0
Loading
/content/journal/jmm/10.1099/jmm.0.016956-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error