1932

Abstract

We have known for decades that long noncoding RNAs (lncRNAs) can play essential functions across most forms of life. The maintenance of chromosome length requires an lncRNA (e.g., hTERC) and two lncRNAs in the ribosome that are required for protein synthesis. Thus, lncRNAs can represent powerful RNA machines. More recently, it has become clear that mammalian genomes encode thousands more lncRNAs. Thus, we raise the question: Which, if any, of these lncRNAs could also represent RNA-based machines? Here we synthesize studies that are beginning to address this question by investigating fundamental properties of lncRNA genes, revealing new insights into the RNA structure–function relationship, determining - and -acting lncRNAs in vivo, and generating new developments in high-throughput screening used to identify functional lncRNAs. Overall, these findings provide a context toward understanding the molecular grammar underlying lncRNA biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012708
2020-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-062917-012708.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012708&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL et al. 2017. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543:7644199–204
    [Google Scholar]
  2. 2. 
    Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B et al. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:181915–27
    [Google Scholar]
  3. 3. 
    Molyneaux BJ, Goff LA, Brettler AC, Chen H-H, Brown JR et al. 2015. DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 85:2275–88
    [Google Scholar]
  4. 4. 
    Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL et al. 2012. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:3577–91
    [Google Scholar]
  5. 5. 
    Ulitsky I, Bartel DP. 2013. lincRNAs: genomics, evolution, and mechanisms. Cell 154:126–46
    [Google Scholar]
  6. 6. 
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:91775–89
    [Google Scholar]
  7. 7. 
    Du Z, Fei T, Verhaak RGW, Su Z, Zhang Y et al. 2013. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol. 20:7908–13
    [Google Scholar]
  8. 8. 
    Kelley D, Rinn J. 2012. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13:11R107
    [Google Scholar]
  9. 9. 
    Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ et al. 2008. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:91433–45
    [Google Scholar]
  10. 10. 
    Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H 2019. Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571:510–14
    [Google Scholar]
  11. 11. 
    Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF et al. 2013. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2:e01749
    [Google Scholar]
  12. 12. 
    Grote P, Wittler L, Hendrix D, Koch F, Währisch S et al. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24:2206–14
    [Google Scholar]
  13. 13. 
    Huarte M, Rinn JL. 2010. Large non-coding RNAs: Missing links in cancer. Hum. Mol. Genet. 19:R2R152–61
    [Google Scholar]
  14. 14. 
    Sun L, Goff LA, Trapnell C, Alexander R, Lo KA et al. 2013. Long noncoding RNAs regulate adipogenesis. PNAS 110:93387–92
    [Google Scholar]
  15. 15. 
    Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J et al. 2014. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21:2198–206
    [Google Scholar]
  16. 16. 
    Loewer S, Cabili MN, Guttman M, Loh Y-H, Thomas K et al. 2010. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42:121113–17
    [Google Scholar]
  17. 17. 
    Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK et al. 2011. LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:7364295–300
    [Google Scholar]
  18. 18. 
    Henry WS, Hendrickson DG, Beca F, Glass B, Lindahl-Allen M et al. 2016. LINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer. Oncotarget 7:5081981–94
    [Google Scholar]
  19. 19. 
    Atianand MK, Hu W, Satpathy AT, Shen Y, Ricci EP et al. 2016. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165:71672–85
    [Google Scholar]
  20. 20. 
    Marín-Béjar O, Marchese FP, Athie A, Sánchez Y, González J et al. 2013. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol 14:9R104
    [Google Scholar]
  21. 21. 
    Mercer TR, Mattick JS. 2013. Structure and function of long noncoding RNAs in epigenetic regulation. Nature 20:3300–7
    [Google Scholar]
  22. 22. 
    Marchese FP, Grossi E, Marín-Béjar O, Bharti SK, Raimondi I et al. 2016. A long noncoding RNA regulates sister chromatid cohesion. Mol. Cell 63:3397–407
    [Google Scholar]
  23. 23. 
    Arun G, Diermeier S, Akerman M, Chang K-C, Wilkinson JE et al. 2016. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30:134–51
    [Google Scholar]
  24. 24. 
    Gutschner T, Hämmerle M, Eissmann M, Hsu J, Kim Y et al. 2013. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:31180–89
    [Google Scholar]
  25. 25. 
    Mao YS, Sunwoo H, Zhang Bin, Spector DL 2010. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13:195–101
    [Google Scholar]
  26. 26. 
    Gong C, Li Z, Ramanujan K, Clay I, Zhang Y et al. 2015. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev. Cell 34:2181–91
    [Google Scholar]
  27. 27. 
    Morris KV, Mattick JS. 2014. The rise of regulatory RNA. Nat. Rev. Genet. 15:6423–37
    [Google Scholar]
  28. 28. 
    Lin N, Chang K-Y, Li Z, Gates K, Rana ZA et al. 2014. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell 53:61005–19
    [Google Scholar]
  29. 29. 
    Lee S, Kopp F, Chang T-C, Sataluri A, Chen B et al. 2016. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164:1–269–80
    [Google Scholar]
  30. 30. 
    Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M et al. 2016. Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531:7595518–22
    [Google Scholar]
  31. 31. 
    Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M et al. 2017. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:6320):aah7111
    [Google Scholar]
  32. 32. 
    Andersen RE, Hong SJ, Lim JJ, Cui M, Harpur BA et al. 2019. The long noncoding RNA Pnky is a trans-acting regulator of cortical development in vivo. Dev. Cell 49:4632–37
    [Google Scholar]
  33. 33. 
    Rinn J, Guttman M. 2014. RNA and dynamic nuclear organization. Science 345:62021240–41
    [Google Scholar]
  34. 34. 
    Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:61471237973
    [Google Scholar]
  35. 35. 
    Lee JT. 2009. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 23:161831–42
    [Google Scholar]
  36. 36. 
    Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G 2015. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88:5861–77
    [Google Scholar]
  37. 37. 
    Abe Y, Kikuchi A, Kobayashi S, Wakusawa K, Tanaka S et al. 2014. Xq26.1–26.2 gain identified on array comparative genomic hybridization in bilateral periventricular nodular heterotopia with overlying polymicrogyria. Dev. Med. Child Neurol. 56:121221–24
    [Google Scholar]
  38. 38. 
    Maass PG, Rump A, Schulz H, Stricker S, Schulze L et al. 2012. A misplaced lncRNA causes brachydactyly in humans. J. Clin. Investig. 122:113990–4002
    [Google Scholar]
  39. 39. 
    Sánchez Y, Huarte M. 2013. Long non-coding RNAs: challenges for diagnosis and therapies. Nucleic Acid Ther 23:115–20
    [Google Scholar]
  40. 40. 
    Guttman M, Rinn JL. 2012. Modular regulatory principles of large non-coding RNAs. Nature 482:7385339–46
    [Google Scholar]
  41. 41. 
    Quinn JJ, Chang HY. 2016. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17:147–62
    [Google Scholar]
  42. 42. 
    Melé M, Mattioli K, Mallard W, Shechner DM, Gerhardinger C, Rinn JL 2017. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res 27:27–37
    [Google Scholar]
  43. 43. 
    Ponjavic J, Ponting CP, Lunter G 2007. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:5556–65
    [Google Scholar]
  44. 44. 
    Guttman M, Amit I, Garber M, French C, Lin MF et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:7235223–27
    [Google Scholar]
  45. 45. 
    Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ 2017. Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell 65:125–38
    [Google Scholar]
  46. 46. 
    Melé M, Mattioli K, Mallard W, Shechner DM, Gerhardinger C, Rinn JL 2017. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res 27:127–37
    [Google Scholar]
  47. 47. 
    Mattioli K, Volders P-J, Gerhardinger C, Lee JC, Maass PG et al. 2019. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res 29:3344–55
    [Google Scholar]
  48. 48. 
    Mukherjee N, Calviello L, Hirsekorn A, de Pretis S, Pelizzola M, Ohler U 2016. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat. Struct. Mol. Biol. 24:186–96
    [Google Scholar]
  49. 49. 
    Tani H, Mizutani R, Salam KA, Tano K, Ijiri K et al. 2012. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:5947–56
    [Google Scholar]
  50. 50. 
    Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E et al. 2012. Genome-wide analysis of long noncoding RNA stability. Genome Res 22:5885–98
    [Google Scholar]
  51. 51. 
    Yin Y, Lu JY, Zhang X, Shao W, Xu Y et al. 2018. U1 snRNP regulates chromatin retention of noncoding RNAs. bioRxiv 310433. https://doi.org/10.1101/310433
    [Crossref] [Google Scholar]
  52. 52. 
    Zuckerman B, Ulitsky I. 2019. Predictive models of subcellular localization of long RNAs. RNA 25:5557–72
    [Google Scholar]
  53. 53. 
    Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43:6904–14
    [Google Scholar]
  54. 54. 
    Ponting CP, Oliver PL, Reik W 2009. Evolution and functions of long noncoding RNAs. Cell 136:4629–41
    [Google Scholar]
  55. 55. 
    Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K et al. 2006. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38:6626–35
    [Google Scholar]
  56. 56. 
    Ulitsky I. 2016. Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat. Rev. Genet. 17:10601–14
    [Google Scholar]
  57. 57. 
    Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I 2015. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 11:71110–22
    [Google Scholar]
  58. 58. 
    Podlevsky JD, Chen JJ-L. 2016. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol 13:8720–32
    [Google Scholar]
  59. 59. 
    Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:7544486–90
    [Google Scholar]
  60. 60. 
    Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS 2014. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:7485701–5
    [Google Scholar]
  61. 61. 
    Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S 2017. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14:175–82
    [Google Scholar]
  62. 62. 
    Smola MJ, Calabrese JM, Weeks KM 2015. Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry 54:466867–75
    [Google Scholar]
  63. 63. 
    Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA et al. 2016. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:51267–79
    [Google Scholar]
  64. 64. 
    Aw JGA, Shen Y, Wilm A, Sun M, Lim XN et al. 2016. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62:4603–17
    [Google Scholar]
  65. 65. 
    Sharma E, Sterne-Weiler T, O'Hanlon D, Blencowe BJ 2016. Global mapping of human RNA-RNA interactions. Mol. Cell 62:4618–26
    [Google Scholar]
  66. 66. 
    Sahakyan A, Yang Y, Plath K 2018. The role of Xist in X-chromosome dosage compensation. Trends Cell Biol 28:999–1013
    [Google Scholar]
  67. 67. 
    Balaton BP, Dixon-McDougall T, Peeters SB, Brown CJ 2018. The eXceptional nature of the X chromosome. Hum. Mol. Genet. 27:R2242–49
    [Google Scholar]
  68. 68. 
    da Rocha ST, Heard E 2017. Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nature 24:3197–204
    [Google Scholar]
  69. 69. 
    Furlan G, Rougeulle C. 2016. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. Wiley Interdiscip. Rev. RNA 7:5702–22
    [Google Scholar]
  70. 70. 
    Jégu T, Aeby E, Lee JT 2017. The X chromosome in space. Nat. Rev. Genet. 18:6377–89
    [Google Scholar]
  71. 71. 
    Monfort A, Wutz A. 2017. Progress in understanding the molecular mechanism of Xist RNA function through genetics. Philos. Trans. R. Soc. A 372:173320160368
    [Google Scholar]
  72. 72. 
    Zappulla DC, Cech TR. 2004. Yeast telomerase RNA: a flexible scaffold for protein subunits. PNAS 101:2710024–29
    [Google Scholar]
  73. 73. 
    Wutz A, Rasmussen TP, Jaenisch R 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30:2167–74
    [Google Scholar]
  74. 74. 
    Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N et al. 2017. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol. Cell 68:5955–69.e10
    [Google Scholar]
  75. 75. 
    Colognori D, Sunwoo H, Kriz AJ, Wang C-Y, Lee JT 2019. Xist deletional analysis reveals an interdependency between Xist RNA and Polycomb complexes for spreading along the inactive X. Mol. Cell 74:1101–10
    [Google Scholar]
  76. 76. 
    Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G et al. 2017. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 31:9876–88
    [Google Scholar]
  77. 77. 
    Sunwoo H, Colognori D, Froberg JE, Jeon Y, Lee JT 2017. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). PNAS 114:4010654–59
    [Google Scholar]
  78. 78. 
    Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M et al. 2015. Systematic discovery of Xist RNA binding proteins. Cell 161:2404–16
    [Google Scholar]
  79. 79. 
    McHugh CA, Chen C-K, Chow A, Surka CF, Tran C et al. 2015. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–36
    [Google Scholar]
  80. 80. 
    Patil DP, Chen C-K, Pickering BF, Chow A, Jackson C et al. 2016. M6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:7620369–73
    [Google Scholar]
  81. 81. 
    Somarowthu S, Legiewicz M, Chillón I, Marcia M, Liu F, Pyle AM 2015. HOTAIR forms an intricate and modular secondary structure. Mol. Cell 58:2353–61
    [Google Scholar]
  82. 82. 
    Hawkes EJ, Hennelly SP, Novikova IV, Irwin JA, Dean C, Sanbonmatsu KY 2016. COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep 16:123087–96
    [Google Scholar]
  83. 83. 
    Xue Z, Hennelly S, Doyle B, Gulati AA, Novikova IV et al. 2016. A G-rich motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol. Cell 64:137–50
    [Google Scholar]
  84. 84. 
    Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D et al. 2013. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol. Cell 51:2156–73
    [Google Scholar]
  85. 85. 
    Quinn JJ, Zhang QC, Georgiev P, Ilik IA, Akhtar A, Chang HY 2016. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev 30:2191–207
    [Google Scholar]
  86. 86. 
    Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O et al. 2015. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:120
    [Google Scholar]
  87. 87. 
    Zhang B, Gunawardane L, Niazi F, Jahanbani F, Chen X, Valadkhan S 2014. A novel RNA motif mediates the strict nuclear localization of a long non-coding RNA. Mol. Cell. Biol. 34:2318–29
    [Google Scholar]
  88. 88. 
    Shukla CJ, McCorkindale AL, Gerhardinger C, Korthauer KD, Cabili MN et al. 2018. High-throughput identification of RNA nuclear enrichment sequences. EMBO J 37:6e98452
    [Google Scholar]
  89. 89. 
    Lubelsky Y, Ulitsky I. 2018. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555:7694107–11
    [Google Scholar]
  90. 90. 
    Chen C-K, Blanco M, Jackson C, Aznauryan E, Ollikainen N et al. 2016. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354:468–72
    [Google Scholar]
  91. 91. 
    Miyagawa R, Tano K, Mizuno R, Nakamura Y, Ijiri K et al. 2012. Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA 18:4738–51
    [Google Scholar]
  92. 92. 
    Martin L, Meier M, Lyons SM, Sit RV, Marzluff WF et al. 2012. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat. Methods 9:121192–94
    [Google Scholar]
  93. 93. 
    Buenrostro JD, Araya CL, Chircus LM, Layton CJ, Chang HY et al. 2014. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 32:6562–68
    [Google Scholar]
  94. 94. 
    Dietrich JS 1996. Edward B. Lewis, Nobel Laureate 1995: A classical geneticist is recognized for his insights into the process by which genes control the development of an organism from egg to adult. Calif. Inst. Technol. Eng. Sci. LIX(1):2–7
    [Google Scholar]
  95. 95. 
    Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J et al. 2012. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res 22:61059–68
    [Google Scholar]
  96. 96. 
    Groff AF, Sanchez-Gomez DB, Soruco MML, Gerhardinger C, Barutcu AR et al. 2016. In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements. Cell Rep 16:82178–86
    [Google Scholar]
  97. 97. 
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ et al. 2010. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:3409–19
    [Google Scholar]
  98. 98. 
    Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R et al. 2014. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell 54:777–90
    [Google Scholar]
  99. 99. 
    Lai K-MV, Gong G, Atanasio A, Rojas J, Quispe J et al. 2015. Diverse phenotypes and specific transcription patterns in twenty mouse lines with ablated LincRNAs. PLOS ONE 10:4e0125522
    [Google Scholar]
  100. 100. 
    Groff AF, Barutcu AR, Lewandowski JP, Rinn JL 2018. Enhancers in the Peril lincRNA locus regulate distant but not local genes. Genome Biol 19:1219
    [Google Scholar]
  101. 101. 
    Yin Y, Yan P, Lu J, Song G, Zhu Y et al. 2015. Opposing roles for the lncRNA Haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell 16:5504–16
    [Google Scholar]
  102. 102. 
    Maamar H, Cabili MN, Rinn J, Raj A 2013. linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev 27:111260–71
    [Google Scholar]
  103. 103. 
    Melé M, Rinn JL. 2016. “Cat's Cradling” the 3D genome by the act of lncRNA transcription. Mol. Cell 62:5657–64
    [Google Scholar]
  104. 104. 
    Schmitt S. 2005. Intergenic transcription through a Polycomb group response element counteracts silencing. Genes Dev 19:6697–708
    [Google Scholar]
  105. 105. 
    Nozawa R-S, Boteva L, Soares DC, Naughton C, Dun AR et al. 2017. SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs. Cell 169:71214–18
    [Google Scholar]
  106. 106. 
    Vance KW, Ponting CP. 2014. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet 30:348–55
    [Google Scholar]
  107. 107. 
    Paralkar VR, Taborda CC, Huang P, Yao Y, Kossenkov AV et al. 2016. Unlinking an lncRNA from its associated cis element. Mol. Cell 62:1104–10
    [Google Scholar]
  108. 108. 
    Engreitz JM, Haines JE, Perez EM, Munson G, Chen J et al. 2016. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539:7629452–55
    [Google Scholar]
  109. 109. 
    Goff L, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB et al. 2015. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. PNAS 112:6855–62
    [Google Scholar]
  110. 110. 
    Zakany J, Darbellay F, Mascrez B, Necsulea A, Duboule D 2017. Control of growth and gut maturation by HoxD genes and the associated lncRNA Haglr. PNAS 114:44E9290–99
    [Google Scholar]
  111. 111. 
    Bonora G, Deng X, Fang H, Ramani V, Qiu R et al. 2018. Orientation-dependent Dxz4 contacts shape the 3D structure of the inactive X chromosome. Nat. Commun. 9:11445
    [Google Scholar]
  112. 112. 
    Barutcu AR, Maass PG, Lewandowski JP, Weiner CL, Rinn JL 2018. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat. Commun. 9:11444
    [Google Scholar]
  113. 113. 
    Cho SW, Xu J, Sun R, Mumbach MR, Carter AC et al. 2018. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173:61398–412.e22
    [Google Scholar]
  114. 114. 
    Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR et al. 2016. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:6313769–73
    [Google Scholar]
  115. 115. 
    Tseng Y-Y, Moriarity BS, Gong W, Akiyama R, Tiwari A et al. 2014. PVT1 dependence in cancer with MYC copy-number increase. Nature 512:82–86
    [Google Scholar]
  116. 116. 
    Lam MTY, Li W, Rosenfeld MG, Glass CK 2014. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 39:4170–82
    [Google Scholar]
  117. 117. 
    Lai F, Shiekhattar R. 2014. Enhancer RNAs: the new molecules of transcription. Curr. Opin. Genet. Dev. 25:38–42
    [Google Scholar]
  118. 118. 
    Lewandowski JP, Lee JC, Hwang T, Sunwoo H, Goldstein JM et al. 2019. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat. Commun 10:5137
    [Google Scholar]
  119. 119. 
    Fang H, Bonora G, Lewandowski JP, Thakur J, Filippova GN et al. 2019. Trans- and cis-acting effects of the lncRNA Firre on epigenetic and structural features of the inactive X chromosome. bioRxiv 687236. https://doi.org/10.1101/687236
    [Crossref]
  120. 120. 
    Froberg JE, Pinter SF, Kriz AJ, Jégu T, Lee JT 2018. Megadomains and superloops form dynamically but are dispensable for X-chromosome inactivation and gene escape. Nat. Commun. 9:15004
    [Google Scholar]
  121. 121. 
    Froberg JE, Yang L, Lee JT 2013. Guided by RNAs: X-inactivation as a model for lncRNA function. J. Mol. Biol. 425:193698–706
    [Google Scholar]
  122. 122. 
    Andergassen D, Smith ZD, Lewandowski JP, Gerhardinger C, Meissner A, Rinn JL 2019. In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. eLife 8:e47214
    [Google Scholar]
  123. 123. 
    Grote P, Herrmann BG. 2013. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 10:101579–85
    [Google Scholar]
  124. 124. 
    Szafranski P, Dharmadhikari AV, Brosens E, Gurha P, Kolodziejska KE et al. 2013. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res 23:123–33
    [Google Scholar]
  125. 125. 
    Atianand MK, Hu W, Satpathy AT, Shen Y, Ricci EP et al. 2016. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165:71672–85
    [Google Scholar]
  126. 126. 
    Elling R, Robinson EK, Shapleigh B, Liapis SC, Covarrubias S et al. 2018. Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep 25:61511–16
    [Google Scholar]
  127. 127. 
    Wang P, Xu J, Wang Y, Cao X 2017. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 358:63661051–55
    [Google Scholar]
  128. 128. 
    Kopp F, Elguindy MM, Yalvac ME, Zhang H, Chen B et al. 2019. PUMILIO hyperactivity drives premature aging of Norad-deficient mice. eLife 8:e42650
    [Google Scholar]
  129. 129. 
    Elguindy MM, Kopp F, Goodarzi M, Rehfeld F, Thomas A et al. 2019. PUMILIO, but not RBMX, binding is required for regulation of genomic stability by noncoding RNA NORAD. eLife 8:e48625
    [Google Scholar]
  130. 130. 
    Ang CE, Ma Q, Wapinski OL, Fan S, Flynn RA et al. 2019. The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. eLife 8:e41770
    [Google Scholar]
  131. 131. 
    Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N et al. 2014. Considerations when investigating lncRNA function in vivo. eLife 3:e03058
    [Google Scholar]
  132. 132. 
    Goff LA, Rinn JL. 2015. Linking RNA biology to lncRNAs. Genome Res 25:101456–65
    [Google Scholar]
  133. 133. 
    Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F 2015. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518:7539409–12
    [Google Scholar]
  134. 134. 
    Kim J, Piao H-L, Kim B-J, Yao F, Han Z et al. 2018. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet. 50:121705–15
    [Google Scholar]
  135. 135. 
    Arun G, Spector DL. 2019. MALAT1 long non-coding RNA and breast cancer. RNA Biol 16:6860–63
    [Google Scholar]
  136. 136. 
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:7536583–88
    [Google Scholar]
  137. 137. 
    Zhu S, Li W, Liu J, Chen C-H, Liao Q et al. 2016. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 34:121279–86
    [Google Scholar]
  138. 138. 
    Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D et al. 2018. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15:611–16
    [Google Scholar]
  139. 139. 
    Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ et al. 2017. RNA editing with CRISPR-Cas13. Science 358:63661019–27
    [Google Scholar]
  140. 140. 
    Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD 2018. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:3665–76.e14
    [Google Scholar]
  141. 141. 
    Niederer RO, Hass EP, Zappulla DC 2017. Long noncoding RNAs in the yeast S. cerevisiae. Adv. Exp. Med. Biol 1008:5705119–32
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012708
Loading
/content/journals/10.1146/annurev-biochem-062917-012708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error