Skip to main content

Advertisement

Log in

Distributions of Angiogenesis and Lymphangiogenesis in Gastrointestinal Intramucosal Tumors

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Although angiogenesis and lymphangiogenesis in gastrointestinal cancers has been investigated in many studies, their distribution characteristics in gastrointestinal intramucosal tumors have not been well addressed.

Methods

We evaluated the blood microvessel density (BMVD) and lymphatic microvessel density (LMVD) by immunostaining with monoclonal antibodies of CD34 and D2-40 in 37 patients with stomach intramucosal carcinoma and 28 patients with colorectal intramucosal neoplasia. Microvessels with endothelial cells labeled by CD34 but not by D2-40 were recognized as blood microvessels; and microvessels with endothelial cells labeled by both CD34 and D2-40 were recognized as lymphatic vessels. Furthermore, the relationships between expression of vascular endothelial growth factor (VEGF), VEGF-C, and BMVD, LMVD were investigated as well.

Results

The LMVD was significantly higher in peritumoral tissues than in corresponding normal tissues in gastrointestinal intramucosal tumors (20.87 versus 14.56, P = 0.003). However, there was no significant difference in the BMVD between peritumoral tissues and corresponding normal tissues (P = 0.166). The BMVD in peritumoral tissues was higher in patients with lymph node metastases than in patients without lymph nodes metastases (P = 0.047). Our results did not show significant association between VEGF, VEGF-C and BMVD, LMVD.

Conclusions

Our results suggested that the increase of lymphangiogenesis seems superior to the increase of angiogenesis in gastrointestinal intramucosal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106–30

    Article  PubMed  Google Scholar 

  2. Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 1995;333:1757–63

    Article  PubMed  CAS  Google Scholar 

  4. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7:192–8

    Article  PubMed  CAS  Google Scholar 

  5. Teranishi N, Naito Z, Ishiwata T, et al. Identification of neovasculature using nestin in colorectal cancer. Int J Oncol 2007;30:593–603

    PubMed  CAS  Google Scholar 

  6. Des Guetz G, Uzzan B, Nicolas P, et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 2006;94:1823–32

    CAS  Google Scholar 

  7. Liang P, Hong JW, Ubukata H, et al. Increased density and diameter of lymphatic microvessels correlate with lymph node metastasis in early stage invasive colorectal carcinoma. Virchows Arch 2006;448:570–5

    Article  PubMed  Google Scholar 

  8. Matsumoto K, Nakayama Y, Inoue Y, et al. Lymphatic microvessel density is an independent prognostic factor in colorectal cancer. Dis Colon Rectum 2007;50:308–14

    Article  PubMed  Google Scholar 

  9. Nakamura Y, Yasuoka H, Tsujimoto M, et al. Importance of lymph vessels in gastric cancer: a prognostic indicator in general and a predictor for lymph node metastasis in early stage cancer. J Clin Pathol 2006;59:77–82

    Article  PubMed  CAS  Google Scholar 

  10. Saad RS, Kordunsky L, Liu YL, et al. Lymphatic microvessel density as prognostic marker in colorectal cancer. Mod Pathol 2006;19:1317–23

    Article  PubMed  CAS  Google Scholar 

  11. Walgenbach-Bruenagel G, Tolba RH, Varnai AD, et al. Detection of lymphatic invasion in early stage primary colorectal cancer with the monoclonal antibody D2–40. Eur Surg Res 2006;38:438–44

    Article  PubMed  CAS  Google Scholar 

  12. Giatromanolaki A, Sivridis E, Koukourakis MI. Angiogenesis in colorectal cancer: prognostic and therapeutic implications. Am J Clin Oncol 2006;29:408–17

    Article  PubMed  Google Scholar 

  13. Cilley JC, Barfi K, Benson AB 3rd, et al. Bevacizumab in the treatment of colorectal cancer. Expert Opin Biol Ther 2007;7:739–49

    Article  PubMed  CAS  Google Scholar 

  14. Van der Auwera I, Van den Eynden GG, Colpaert CG, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 2005;11:7637–42

    Article  PubMed  CAS  Google Scholar 

  15. Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Invest 2002;82:1255–7

    PubMed  Google Scholar 

  16. Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod Pathol 2002;15:434–40

    Article  PubMed  Google Scholar 

  17. Evangelou E, Kyzas PA, Trikalinos TA. Comparison of the diagnostic accuracy of lymphatic endothelium markers: Bayesian approach. Mod Pathol 2005;18:1490–7

    Article  PubMed  CAS  Google Scholar 

  18. Van den Eynden GG, Van der Auwera I, Van Laere SJ, et al. Distinguishing blood and lymph vessel invasion in breast cancer: a prospective immunohistochemical study. Br J Cancer 2006;94:1643–9

    PubMed  Google Scholar 

  19. Fox SH, Whalen GF, Sanders MM, et al. Angiogenesis in normal tissue adjacent to colon cancer. J Surg Oncol 1998;69:230–4

    Article  PubMed  CAS  Google Scholar 

  20. Furudoi A, Tanaka S, Haruma K, et al. Clinical significance of vascular endothelial growth factor C expression and angiogenesis at the deepest invasive site of advanced colorectal carcinoma. Oncology 2002;62:157–66

    Article  PubMed  CAS  Google Scholar 

  21. Liang JT, Huang KC, Jeng YM, et al. Microvessel density, cyclo-oxygenase 2 expression, K-ras mutation and p53 overexpression in colonic cancer. Br J Surg 2004;91:355–61

    Article  PubMed  CAS  Google Scholar 

  22. Liu X, Song S, Xu W. [Microvessel quantitation and expression of VEGF in colorectal tumors]. Zhonghua Zhong Liu Za Zhi 1999;21:430–2

    PubMed  CAS  Google Scholar 

  23. Nakasaki T, Wada H, Shigemori C, et al. Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer. Am J Hematol 2002;69:247–54

    Article  PubMed  CAS  Google Scholar 

  24. Hamilton SR, Aaltonen LA. Pathology and Genetics: Tumors of the Digestive System. Lyon: IARC, 2000

    Google Scholar 

  25. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995;36:169–80

    Article  PubMed  CAS  Google Scholar 

  26. Siironen P, Ristimaki A, Narko K, et al. VEGF-C and COX-2 expression in papillary thyroid cancer. Endocr Relat Cancer 2006;13:465–73

    Article  PubMed  CAS  Google Scholar 

  27. Eichten A, Hyun WC, Coussens LM. Distinctive features of angiogenesis and lymphangiogenesis determine their functionality during de novo tumor development. Cancer Res 2007;67:5211–20

    Article  PubMed  CAS  Google Scholar 

  28. Schoppmann SF, Birner P, Studer P, et al. Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer. Anticancer Res 2001;21:2351–5

    PubMed  CAS  Google Scholar 

  29. Schoppmann SF, Bayer G, Aumayr K, et al. Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Ann Surg 2004;240:306–12

    Article  PubMed  Google Scholar 

  30. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001;7:462–8

    PubMed  CAS  Google Scholar 

  31. Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002;296:1883–6

    Article  PubMed  CAS  Google Scholar 

  32. Van Trappen PO, Pepper MS. Lymphatic dissemination of tumour cells and the formation of micrometastases. Lancet Oncol 2002;3:44–52

    Article  PubMed  Google Scholar 

  33. Roma AA, Magi-Galluzzi C, Kral MA, et al. Peritumoral lymphatic invasion is associated with regional lymph node metastases in prostate adenocarcinoma. Mod Pathol 2006;19:392–8

    Article  PubMed  Google Scholar 

  34. Sarli G, Sassi F, Brunetti B, et al. Lymphatic vessels assessment in feline mammary tumours. BMC Cancer 2007;7:7

    Article  PubMed  CAS  Google Scholar 

  35. Miyata Y, Kanda S, Ohba K, et al. Lymphangiogenesis and angiogenesis in bladder cancer: prognostic implications and regulation by vascular endothelial growth factors-A, -C, and -D. Clin Cancer Res 2006;12:800–6

    Article  PubMed  CAS  Google Scholar 

  36. Choi WW, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol 2005;18:143–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the editors and reviewers who revised the paper. Special thanks are due to Dr. Jing-jing Lu for her statistical advice. The authors would like to thank Mrs. Hong Han for her excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng-Yin Zhou MD, MS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Zhong, WX., Mu, DB. et al. Distributions of Angiogenesis and Lymphangiogenesis in Gastrointestinal Intramucosal Tumors. Ann Surg Oncol 15, 1117–1123 (2008). https://doi.org/10.1245/s10434-007-9752-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9752-6

Keywords

Navigation