Skip to main content
Log in

Ceftobiprole

A Review of a Broad-Spectrum and Anti-MRSA Cephalosporin

  • Review Article
  • Ceftobiprole
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Ceftobiprole, an investigational cephalosporin, is currently in phase III clinical development. Ceftobiprole is a broad-spectrum cephalosporin with demonstrated in vitro activity against Gram-positive cocci, including meticillin-resistant Staphylococcus aureus (MRSA) and meticillin-resistant S. epidermidis, penicillin-resistant S. pneumoniae, Enterococcus faecalis, Gram-negative bacilli including AmpC-producing Escherichia coli and Pseudomonas aeruginosa, but excluding extended-spectrum β-lactamase-producing strains. Like cefotaxime, ceftriaxone, ceftazidime, and cefepime, ceftobiprole demonstrates limited activity against anaerobes such as Bacteroides fragilis and non-fragilis Bacteroides spp. In single-step and serial passage in vitro resistance development studies, ceftobiprole demonstrated a low propensity to select for resistant subpopulations. Ceftobiprole, like cefepime, is a weak inducer and a poor substrate for AmpC β-lactamases.

Ceftobiprole medocaril, the prodrug of ceftobiprole, is converted by plasma esterases to ceftobiprole in <30 minutes. Peak serum concentrations of ceftobiprole observed at the end of a single 30-minute infusion were 35.5 µg/mL for a 500-mg dose and 59.6 µg/mL for a 750-mg dose. The volume of distribution of ceftobiprole is 0.26 L/kg (≈18 L), protein binding is 16%, and its serum half-life is approximately 3.5 hours. Ceftobiprole is renally excreted (≈70% in the active form) and systemic clearance correlates with creatinine clearance, meaning that dosage adjustment is required in patients with renal dysfunction. Ceftobiprole has a modest post-antibiotic effect (PAE) of ≈0.5 hours for MRSA and a longer PAE of approximately 2 hours for penicillin-resistant pneumococci. Ceftobiprole, when administered intravenously at 500 mg once every 8 hours (2-hour infusion), has a >90% probability of achieving fT>MIC (free drug concentration exceeds the minimum inhibitory concentration [MIC]) for 40% and 60%, respectively, of the dosing interval for isolates with ceftobiprole MIC =4 and =2 mg/L, respectively.

Currently, only limited clinical trial data are published for ceftobiprole. In a phase III trial, 784 patients with Gram-positive skin infections were randomized to treatment with either ceftobiprole 500 mg or vancomycin 1 g, each administered twice daily for 7–14 days; 93.3% of patients were clinically cured with ceftobiprole compared with 93.5% receiving vancomycin, and the eradication rate for MRSA infections was 91.8% for ceftobiprole compared with 90% for vancomycin. A phase III, randomized, double-blind, multicenter trial compared ceftobiprole 500 mg every 8 hours with vancomycin 1 g every 12 hours plus ceftazidime 1 g every 8 hours in patients with complicated skin and skin structure infections. Of the 828 patients enrolled, 31% had diabetic foot infections, 30% had abscesses, and 22% had wounds. No difference in clinical cure was reported in the clinically evaluable, intent-to-treat and microbiologically evaluable populations with cure rates of 90.5%, 81.9%, and 90.8%, respectively, in the ceftobiprole-treated patients and 90.2%, 80.8%, and 90.5%, respectively, in the vancomycin plus ceftazidime-treated group. Microbiologic eradication of Gram-positive cocci meticillinsusceptible S. aureus (MSSA) [ceftobiprole 91% vs vancomycin plus ceftazidime 92%] and MRSA (ceftobiprole 87% vs vancomycin plus ceftazidime 80%), as well as Gram-negative bacilli, E. coli (ceftobiprole 89% vs vancomycin plus ceftazidime 92%), and P. aeruginosa (ceftobiprole 87% vs vancomycin plus ceftazidime 100%), was not significantly different between groups. Similar cures rates in the microbiologically evaluable population occurred in both groups for Panton-Valentine leukocidin (PVL)-positive MSSA and PVL-positive MRSA.

Currently, ceftobiprole has completed phase III trials for complicated skin and skin structure infections due to MRSA and nosocomial pneumonia due to suspected or proven MRSA; phase III trials are also ongoing in community-acquired pneumonia. Ceftobiprole has so far demonstrated a good safety profile in preliminary studies with similar tolerability to comparators. The broad-spectrum activity of ceftobiprole may allow it to be used as monotherapy in situations where a combination of antibacterials might be required. Further clinical studies are needed to determine the efficacy and safety of ceftobiprole and to define its role in patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Bosso JA. The antimicrobial armamentarium: evaluating current and future treatment options. Pharmacotherapy 2005 Oct; 25 (10 Pt 2): 55–62S

    Article  Google Scholar 

  2. Drew RH. Emerging options for treatment of invasive, multidrug-resistant Staphylococcus aureus infections. Pharmacotherapy 2007 Feb; 27 (2): 227–49

    Article  PubMed  CAS  Google Scholar 

  3. Bush K, Heep M, Macielag MJ, et al. Anti-MRSA beta-lactams in development, with a focus on ceftobiprole: the first anti-MRSA beta-lactam to demonstrate clinical efficacy. Expert Opin Investig Drugs 2007 Apr; 16 (4): 419–29

    Article  PubMed  CAS  Google Scholar 

  4. Page MG. Anti-MRSA beta-lactams in development. Curr Opin Pharmacol 2006 Oct; 6 (5): 480–5

    Article  PubMed  CAS  Google Scholar 

  5. Livermore DM. Can beta-lactams be re-engineered to beat MRSA Clin Microbiol Infect 2006 Apr; 12 Suppl. 2: 11–6

    Article  PubMed  CAS  Google Scholar 

  6. Chambers HF. Ceftobiprole: in-vivo profile of a bactericidal cephalosporin. Clin Microbiol Infect 2006 Apr; 12 Suppl. 2: 17–22

    Article  PubMed  CAS  Google Scholar 

  7. Hoffman-Roberts HL, C Babcock E, Mitropoulos IF. Investigational new drugs for the treatment of resistant pneumococcal infections. Expert Opin Investig Drugs 2005 Aug; 14 (8): 973–95

    Article  PubMed  CAS  Google Scholar 

  8. Ceftobiprole medocaril: BAL5788, JNJ 30982081, JNJ30982081, RO 65–5788, RO 655788. Drugs R D 2006; 7 (5): 305–11

    Google Scholar 

  9. Poulakou G, Giamarellou H. Investigational treatments for postoperative surgical site infections. Expert Opin Investig Drugs 2007 Feb; 16 (2): 137–55

    Article  PubMed  CAS  Google Scholar 

  10. Appelbaum PC. MRSA: the tip of the iceberg. Clin Microbiol Infect 2006 Apr; 12 Suppl. 2: 3–10

    Article  PubMed  CAS  Google Scholar 

  11. Appelbaum PC, Jacobs MR. Recently approved and investigational antibiotics for treatment of severe infections caused by Gram-positive bacteria. Curr Opin Microbiol 2005 Oct; 8 (5): 510–7

    Article  PubMed  CAS  Google Scholar 

  12. Georgopapadakou N. Superbugs and superdrugs: a focus on antibacterials. 6th Annual SMi Conference. Expert Opin Emerg Drugs 2004 May; 9 (1): 191–5

    Google Scholar 

  13. Davies TA, Page MG, Shang W, et al. Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 2007; 51: 1226

    Google Scholar 

  14. Queenan A, Bush K. Ceftobiprole: effect on AmpC beta-lactamase induction and resistance frequency in Gram-negative bacteria [abstract no. C1-55]. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  15. Banerjee R, Gretes M, Basuino L, et al. In-vitro selection and characterization of ceftobiprole-resistant methicillin-resistant Staphylococcus aureus (MRSA). 47th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

  16. Heep M, Geier B, Hofer B, et al. Induction of AmpC beta-lactamases in Enterobacter cloacae triggers resistance to extended spectrum cephalosporins, but not to cefepime and ceftobiprole. 45th Interscience Conference on Anti-microbial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  17. Queenan A, Shang W, Kania M, et al. Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrob Agents Chemother 2007; 51: 3089–95

    Article  PubMed  CAS  Google Scholar 

  18. Kosowska K, Hoellman DB, Lin G, et al. Antipneumococcal activity of ceftobiprole, a novel broad-spectrum cephalosporin. Antimicrob Agents Chemother 2005 May; 49 (5): 1932–42

    Article  PubMed  CAS  Google Scholar 

  19. Anderegg TR, Jones RN, Sader HS. Quality control guidelines for BAL9141 (Ro 63-9141), an investigational cephalosporin, when reference MIC and standardized disk diffusion susceptibility test methods are used. J Clin Microbiol 2004 Jul; 42 (7): 3356–8

    Article  PubMed  CAS  Google Scholar 

  20. Blondeau JM, Yaschuk Y, Suter M, et al. In-vitro susceptibility of 1982 respiratory tract pathogens and 1921 urinary tract pathogens against 19 antimicrobial agents: a Canadian multicentre study. Canadian Antimicrobial Study Group. J Antimicrob Chemother 1999 Mar; 43 Suppl. A: 3–23

    CAS  Google Scholar 

  21. Bogdanovich T, Clark C, Ednie L, et al. Activities of ceftobiprole, a novel broad-spectrum cephalosporin, against Haemophilus influenzae and Moraxella catarrhalis. Antimicrob Agents Chemother 2006 Jun; 50 (6): 2050–7

    Article  PubMed  CAS  Google Scholar 

  22. Bogdanovich T, Ednie LM, Shapiro S, et al. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother 2005 Oct; 49 (10): 4210–9

    Article  PubMed  CAS  Google Scholar 

  23. Davies TA, Shang W, Bush K. Activities of ceftobiprole and other beta-lactams against Streptococcus pneumoniae clinical isolates from the United States with defined substitutions in penicillin-binding proteins PBP 1a, PBP 2b, and PBP 2x. Antimicrob Agents Chemother 2006 Jul; 50 (7): 2530–2

    Article  PubMed  CAS  Google Scholar 

  24. Denis O, Deplano A, Nonhoff C, et al. In vitro activities of ceftobiprole, tigecycline, daptomycin, and 19 other antimicrobials against methicillin-resistant Staphylococcus aureus strains from a national survey of Belgian hospitals. Antimicrob Agents Chemother 2006 Aug; 50 (8): 2680–5

    Article  PubMed  CAS  Google Scholar 

  25. Deshpande L, Rhomberg PR, Fritsche TR, et al. Bactericidal activity of BAL9141, a novel parenteral cephalosporin against contemporary Gram-positive and Gram-negative isolates. Diagn Microbiol Infect Dis 2004 Sep; 50 (1): 73–5

    Article  PubMed  CAS  Google Scholar 

  26. Deshpande LM, Jones RN. Bactericidal activity and synergy studies of BAL9141, a novel pyrrolidinone-3-ylidenemethyl cephem, tested against streptococci, enterococci and methicillin-resistant staphylococci. Clin Microbiol Infect 2003 Nov; 9 (11): 1120–4

    Article  PubMed  CAS  Google Scholar 

  27. Ednie L, Shapiro S, Appelbaum PC. Antianaerobe activity of ceftobiprole, a new broad-spectrum cephalosporin. Diagn Microbiol Infect Dis 2007; 58: 133–6

    Article  PubMed  CAS  Google Scholar 

  28. Fujimura T, Yamano Y, Yoshida I, et al. In vitro activity of S-3578, a new broad-spectrum cephalosporin active against methicillin-resistant staphylococci. Antimicrob Agents Chemother 2003 Mar; 47 (3): 923–31

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein EJ, Citron DM, Merriam CV, et al. In vitro activity of ceftobiprole against aerobic and anaerobic strains isolated from diabetic foot infections. Antimicrob Agents Chemother 2006 Nov; 50 (11): 3959–62

    Article  PubMed  CAS  Google Scholar 

  30. Goldstein F, Perutka J, Cuirolo A, et al. Identification and phenotypic characterization of a beta-lactam-dependent, methicillin-resistant Staphylococcus aureus (MRSA). Antimicrob Agents Chemother 2007; 51: 2514–22

    Article  PubMed  CAS  Google Scholar 

  31. Issa NC, Rouse MS, Piper KE, et al. In vitro activity of BAL9141 against clinical isolates of gram-negative bacteria. Diagn Microbiol Infect Dis 2004 Jan; 48 (1): 73–5

    Article  PubMed  CAS  Google Scholar 

  32. Jones RN, Deshpande LM, Mutnick AH, et al. In vitro evaluation of BAL9141, a novel parenteral cephalosporin active against oxacillin-resistant staphylococci. J Antimicrob Chemother 2002 Dec; 50 (6): 915–32

    Article  PubMed  CAS  Google Scholar 

  33. Maclayton DO, Hall 2nd RG. Pharmacologic treatment options for nosocomial pneumonia involving methicillin-resistant Staphylococcus aureus. Ann Pharmacother 2007 Feb; 41 (2): 235–44

    Article  PubMed  CAS  Google Scholar 

  34. Mesaros N, Nordmann P, Plesiat P, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007; 13: 560–78

    Article  PubMed  CAS  Google Scholar 

  35. Rouse MS, Steckelberg JM, Patel R. In vitro activity of ceftobiprole, daptomycin, linezolid, and vancomycin against methicillin-resistant staphylococci associated with endocarditis and bone and joint infection. Diagn Microbiol Infect Dis 2007; 58: 363–5

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt-Ioanas M, de Roux A, Lode H. New antibiotics for the treatment of severe staphylococcal infection in the critically ill patient. Curr Opin Crit Care 2005 Oct; 11 (5): 481–6

    Article  PubMed  Google Scholar 

  37. von Eiff C, Friedrich AW, Becker K, et al. Comparative in vitro activity of ceftobiprole against staphylococci displaying normal and small-colony variant phenotypes. Antimicrob Agents Chemother 2005 Oct; 49 (10): 4372–4

    Article  Google Scholar 

  38. Wootton M, Bowker KE, Holt HA, et al. BAL 9141, a new broad-spectrum pyrrolidinone cephalosporin: activity against clinically significant anaerobes in comparison with 10 other antimicrobials. J Antimicrob Chemother 2002 Mar; 49 (3): 535–9

    Article  PubMed  CAS  Google Scholar 

  39. Zbinden R, Punter V, von Graevenitz A. In vitro activities of BAL9141, a novel broad-spectrum pyrrolidinone cephalosporin, against gram-negative nonfer-menters. Antimicrob Agents Chemother 2002 Mar; 46 (3): 871–4

    Article  PubMed  CAS  Google Scholar 

  40. Zhanel G, Brunham R. Third-generation cephalosporins. Can J Hosp Pharm 1988; 41: 183–94

    Google Scholar 

  41. Davies T, Bush K. Activity of ceftobiprole and other beta-lactams against Strepto-coccus pneumoniae U.S. clinical isolates with defined substitutions in penicillin-binding proteins (PBP) PBP1a, PBP2b, and PBP2x. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  42. Fritsche TR, Sader HS, Jones RN. Spectrum and potency of ceftobiprole tested against staphylococci and streptococci recovered from patients in Latin America (2003-2005). 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  43. Fritsche TR, Sader HS, Jones, RN. In vitro activity of ceftobiprole tested against a recent collection of North American Pseudomonas aeruginosa. 45th Inter-science Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16- 19; Washington, DC

    Google Scholar 

  44. Amsler KM, Bush K, Strauss R, et al. Ceftobiprole activity against baseline pathogens from a complicated skin and skin structure infection clinical trial. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  45. Kresken M, Hafner D. Susceptibilities of most prevalent Enterobacteriaceae-species to ceftobiprole: results of the antimicrobial resistance surveillance study of the Paul Ehrlich Society for Chemotherapy, 2004. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  46. Kresken M, Brauers J, Korber-Irrgang B, et al. In vitro activity of ceftobiprole combined with amikacin or levofloxacin against Pseudomonas aeruginosa by time-kill methodology. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

  47. Amsler KM, Bush K, Wira E, et al. In vitro susceptibility of ceftobiprole against non-fermenting clinical isolates. 45th Interscience Conference on Anti-microbial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  48. Von Eiff C, Friedrich AW, Becker K, et al. Antistaphylococcal activity of ceftobiprole (BAL 9141). 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16-19; Washington, DC

    Google Scholar 

  49. Amsler K, Bajaksouzian S, Windau A, et al. Ceftobiprole activity against pathogens from two complicated skin and skin structure infection (cSSSI) clinical trials. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy: 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

  50. Pillar CM, Torres MK, Shah D, et al. In-vitro activity profile of ceftobiprole (BPR), a broad-spectrum anti-MRSA cephalosporin, against recent S. aureus (SA) isolated from specific clinical specimens. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

  51. Bell JM, Fritsche TR, Jones RN, et al. Activity of ceftobiprole (BPR) tested against Gram-positive and -negative pathogens in the Asia-Pacific region: report from the SENTRY antimicrobial surveillance program (2006). 47th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

  52. Hebeisen P, Heinze-Krause I, Angehrn P, et al. In vitro and in vivo properties of Ro 63-9141 a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob Agents Chemother 2001 Mar; 45 (3): 825–36

    Article  PubMed  CAS  Google Scholar 

  53. Schmitt-Hoffmann A, Roos B, Schleimer M, et al. Single-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob Agents Chemother 2004 Jul; 48 (7): 2570–5

    Article  PubMed  CAS  Google Scholar 

  54. Barbhaiya RH, Forgue ST, Gleason CR, et al. Safety, tolerance, and pharmacokinetic evaluation of cefepime after administration of single intravenous doses. Antimicrob Agents Chemother 1990 Jun; 34 (6): 1118–22

    Article  PubMed  CAS  Google Scholar 

  55. Burgess DS, Hastings RW, Hardin TC. Pharmacokinetics and pharmacodynamics of cefepime administered by intermittent and continuous infusion. Clin Ther 2000 Jan; 22 (1): 66–75

    Article  PubMed  CAS  Google Scholar 

  56. Chiu LM, Menhinick AM, Johnson PW, et al. Pharmacokinetics of intravenous azithromycin and ceftriaxone when administered alone and concurrently to healthy volunteers. J Antimicrob Chemother 2002 Dec; 50 (6): 1075–9

    Article  PubMed  CAS  Google Scholar 

  57. Garrelts JC, Wagner DJ. The pharmacokinetics, safety, and tolerance of cefepime administered as an intravenous bolus or as a rapid infusion. Ann Pharmacother 1999 Dec; 33 (12): 1258–61

    Article  PubMed  CAS  Google Scholar 

  58. Joynt GM, Lipman J, Gomersall CD, et al. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 2001 Apr; 47 (4): 421–9

    Article  PubMed  CAS  Google Scholar 

  59. Kovarik JM, ter Maaten JC, Rademaker CM, et al. Pharmacokinetics of cefepime in patients with respiratory tract infections. Antimicrob Agents Chemother 1990 Oct; 34 (10): 1885–8

    Article  PubMed  CAS  Google Scholar 

  60. Luthy R, Blaser J, Bonetti A, et al. Comparative multiple-dose pharmacokinetics of cefotaxime, moxalactam, and ceftazidime. Antimicrob Agents Chemother 1981 Nov; 20 (5): 567–75

    Article  PubMed  CAS  Google Scholar 

  61. Perry TR, Schentag JJ. Clinical use of ceftriaxone: a pharmacokinetic-pharmaco-dynamic perspective on the impact of minimum inhibitory concentration and serum protein binding. Clin Pharmacokinet 2001; 40 (9): 685–94

    Article  PubMed  CAS  Google Scholar 

  62. Pletz MW, Rau M, Bulitta J, et al. Ertapenem pharmacokinetics and impact on intestinal microflora, in comparison to those of ceftriaxone, after multiple dosing in male and female volunteers. Antimicrob Agents Chemother 2004 Oct; 48 (10): 3765–72

    Article  PubMed  CAS  Google Scholar 

  63. Schmitt-Hoffmann A, Nyman L, Roos B, et al. Multiple-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob Agents Chemother 2004 Jul; 48 (7): 2576–80

    Article  PubMed  CAS  Google Scholar 

  64. Tam VH, McKinnon PS, Akins RL, et al. Pharmacokinetics and pharmaco-dynamics of cefepime in patients with various degrees of renal function. Animicrob Agents Chemother 2003 Jun; 47 (6): 1853–61

    Article  CAS  Google Scholar 

  65. Pankuch GA, Appelbaum PC. Postantibiotic effect of ceftobiprole against 12 gram-positive organisms. Antimicrob Agents Chemother 2006 Nov; 50 (11): 3956–8

    Article  PubMed  CAS  Google Scholar 

  66. Lodise TPJP, Pypstra RMD, Kahn JMD, et al. Probability of target attainment for ceftobiprole as derived from a population pharmacokinetic analysis of 150 subjects. Antimicrob Agents Chemother 2007; 51: 2378–87

    Article  PubMed  CAS  Google Scholar 

  67. Arias CA, Singh K, Panesso D, et al. Time-kill and synergism studies of ceftobiprole against Enterococcus faecalis including beta-lactamase producing and vancomycin-resistant isolates. Antimicrob Agents Chemother 2007; 51: 2043–7

    Article  PubMed  CAS  Google Scholar 

  68. Mouton JW, Schmitt-Hoffmann A, Shapiro S, et al. Use of Monte Carlo simulations to select therapeutic doses and provisional breakpoints of BAL9141. Antimicrob Agents Chemother 2004 May; 48 (5): 1713–8

    Article  PubMed  CAS  Google Scholar 

  69. Schafer JA, Hovde LB, Mitropoulos I, et al. In-vitro comparison of vancomycin, ceftobiprole and linezolid in a pharmacodynamic model against methicillin-resistant Staphylococcus aureus including wild-type heteroresistant tolerant and CA-MRSA strains. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

  70. Laohavaleeson S, Tessier PR, Nicolau DP. Pharmacodynamic comparison of ceftobiprole in pneumonia caused by phenotypically diverse Staphylococcus aureus. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

  71. Azoulay-Dupuis E, Bedos JP, Mohler J, et al. Efficacy of BAL5788, a prodrug of cephalosporin BAL9141, in a mouse model of acute pneumococcal pneumonia. Antimicrob Agents Chemother 2004 Apr; 48 (4): 1105–11

    Article  PubMed  CAS  Google Scholar 

  72. Chambers HF. Evaluation of ceftobiprole in a rabbit model of aortic valve endocarditis due to methicillin-resistant and vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2005 Mar; 49 (3): 884–8

    Article  PubMed  CAS  Google Scholar 

  73. Entenza JM, Hohl P, Heinze-Krauss I, et al. BAL9141, a novel extended-spectrum cephalosporin active against methicillin-resistant Staphylococcus aureus in treatment of experimental endocarditis. Antimicrob Agents Chemother 2002 Jan; 46 (1): 171–7

    Article  PubMed  CAS  Google Scholar 

  74. Rouse MS, Hein MM, Anguita-Alonso P, et al. Ceftobiprole medocaril (BAL5788) treatment of experimental Haemophilus influenzae, Enterobacter cloacae, and Klebsiella pneumoniae murine pneumonia. Diagn Microbiol Infect Dis 2006 Aug; 55 (4): 333–6

    Article  PubMed  CAS  Google Scholar 

  75. Vaudaux P, Gjinovci A, Bento M, et al. Intensive therapy with ceftobiprole medocaril of experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2005 Sep; 49 (9): 3789–93

    Article  PubMed  CAS  Google Scholar 

  76. Drees M, Boucher H. New agents for Staphylococcus aureus endocarditis. Curr Opin Infect Dis 2006 Dec; 19 (6): 544–50

    Article  PubMed  CAS  Google Scholar 

  77. Bayes M, Rabasseda X, Prous JR. Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2005 May; 27 (4): 265–84

    PubMed  CAS  Google Scholar 

  78. Paterson DL.Clinical experience with recently approved antibiotics. Curr Opin Pharmacol 2006 Oct; 6 (5): 486–90

    Article  PubMed  CAS  Google Scholar 

  79. Scheinfeld N. A comparison of available and investigational antibiotics for complicated skin infections and treatment-resistant Staphylococcus aureus and enterococcus. J Drugs Dermatol 2007 Jan; 6 (1): 97–103

    PubMed  Google Scholar 

  80. Noel GJ, Strauss RS, Amsler K, et al. Results of a double-blind randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother 2008; 52: 37–44

    Article  PubMed  CAS  Google Scholar 

  81. Noel GJ, Bush K, Bagchi P, et al. A randomized double-blind trial comparing ceftobiprole medocaril to vancomycin plus ceftazidime in the treatment of patients with complicated skim and skin-structure infections. Clin Infect Dis 2008; 46 (5): 647–55

    Article  PubMed  Google Scholar 

  82. Strauss RS, Amsler K, Jacobs MR, et al. Ceftobiprole (BPR) as treatment of complicated skin and skin structure infections (cSSSI) caused by Panton- Valentine (PVL)-positive staphylococci. 47th Interscience Conference on Anti-microbial Agents and Chemotherapy; 2007 Sep 16-19; Chicago (IL)

    Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. George G. Zhanel has received a research grant for the study of ceftobiprole from Johnson and Johnson. The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Zhanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanel, G.G., Lam, A., Schweizer, F. et al. Ceftobiprole. Am J Clin Dermatol 9, 245–254 (2008). https://doi.org/10.2165/00128071-200809040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200809040-00004

Keywords

Navigation