Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
NewsThe Cochrane Library
Open Access

Systems Approaches to Optimizing Deep Brain Stimulation Therapies in Parkinson’s Disease

Saudi Medical Journal April 2018, 39 (4) 429;

21 March 2018 - Systems biologists, physicists, and engineers have intensively worked at computational tools to analyze, predict, and optimize the effects of Deep Brain Stimulation (DBS) to treat chronic neurological diseases. These efforts often have overlapping objectives and closely-related methods, but they are rarely compared, combined, or jointly discussed, perhaps because they often target different research communities.

A new WIREs Systems Biology and Medicine review systematically brings this information together to identify the major milestones in the development of systems approaches to the modeling and study of Parkinson’s disease and DBS. These approaches acknowledge the interactive nature and interdependence of various factors to optimize the therapeutic effects of DBS in individual patients.

“Although effective and generally safe, DBS remains a fascinating puzzle to scientists, physicians, and engineers. The therapeutic mechanisms of DBS, in fact, are still elusive and the current, semi-permanent stimulation protocols have often motivated the investigation of ways to make DBS less invasive and more efficient,” said lead author Dr. Sabato Santaniello, of the University of Connecticut. “In this review article, we show how different strides in medical imaging, computer modeling, and control strategies have paved the way towards a truly patient-specific optimization of DBS therapy.

Full citation: Santaniello S, Gale JT, Sarma SV. Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease. Wiley Interdiscip Rev Syst Biol Med. 2018 Mar 20:e1421. doi: 10.1002/wsbm.1421.

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd., reproduced with permission.

  • Copyright: © Saudi Medical Journal

This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire