Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia

Ibrahim M. Gosadi
Saudi Medical Journal January 2016, 37 (1) 12-20; DOI: https://doi.org/10.15537/smj.2016.1.12675
Ibrahim M. Gosadi
From the Prince Sattam Chair for Epidemiology and Public Health Research, Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
MPH, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Thomas D
    (2004) Statistical Methods in Genetic Epidemiology (Oxford University Press, New York (NY)).
  2. ↵
    1. Federation ID
    IDF Worldwide Definition of the Metabolic Syndrome, Available from: http://www.idf.org/metabolic-syndrome. cited 2015 April 23.
  3. ↵
    1. Kassi E,
    2. Pervanidou P,
    3. Kaltsas G,
    4. Chrousos G
    (2011) Metabolic syndrome: definitions and controversies. BMC Med 9:48.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Bahijri SM,
    2. Al Raddadi RM
    (2013) The importance of local criteria in the diagnosis of metabolic syndrome in Saudi Arabia. Ther Adv Endocrinol Metab 4:51–59.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Al-Nozha M,
    2. Al-Khadra A,
    3. Arafah MR,
    4. Al-Maatouq MA,
    5. Khalil MZ,
    6. Khan NB,
    7. et al.
    (2005) Metabolic syndrome in Saudi Arabia. Saudi Med J 26:1918–1925.
    OpenUrlPubMedWeb of Science
  6. ↵
    1. Ministry of Health
    (2013) Survey of Health Information, Available from: http://www.moh.gov.sa/en/ministry/statistics/pages/healthinformatics.aspx. cited 2015 April 12.
  7. ↵
    1. Bin Horaib G,
    2. Al-Khashan HI,
    3. Mishriky AM,
    4. Selim MA,
    5. Alnowaiser N,
    6. Binsaeed AA,
    7. et al.
    (2013) Prevalence of obesity among military personnel in Saudi Arabia and associated risk factors. Saudi Med J 34:401–407.
    OpenUrl
  8. ↵
    1. Washi SA,
    2. Ageib MB
    (2010) Poor diet quality and food habits are related to impaired nutritional status in 13- to 18-year-old adolescents in Jeddah. Nutr Res 30:527–534.
    OpenUrlPubMed
  9. ↵
    1. Al-Hazzaa HM,
    2. Abahussain NA,
    3. Al-Sobayel HI,
    4. Qahwaji DM,
    5. Musaiger AO
    (2011) Physical activity, sedentary behaviors and dietary habits among Saudi adolescents relative to age, gender and region. Int J Behav Nutr Phys Act 8:140.
    OpenUrlCrossRefPubMed
  10. ↵
    1. Alkhunaizi AM,
    2. Al JH,
    3. Al SZ
    (2013) Salt intake in Eastern Saudi Arabia. East Mediterr Health J 19:915–918.
    OpenUrlPubMed
  11. ↵
    1. Dunford E,
    2. Webster J,
    3. Woodward M,
    4. Czernichow S,
    5. Yuan WL,
    6. Jenner K,
    7. et al.
    (2012) The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction. CMAJ 184:1023–1028.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Al-Rukban MO
    (2003) Obesity among Saudi male adolescents in Riyadh, Saudi Arabia. Saudi Med J 24:27–33.
    OpenUrlPubMedWeb of Science
  13. ↵
    1. AlQuaiz AM,
    2. Tayel SA
    (2009) Barriers to a healthy lifestyle among patients attending primary care clinics at a university hospital in Riyadh. Ann Saudi Med 29:30–35.
    OpenUrlPubMed
    1. Al-Hazzaa H,
    2. Sulaimani R
    (1993) Maximal oxygen uptake and daily physical activity in 7-to-12 year-old boys. Pediatric Exercise Science 5:357–366.
    OpenUrl
    1. Al-Rafaee SA,
    2. Al-Hazzaa HM
    (2001) Physical activity profile of adult males in Riyadh City. Saudi Med J 22:784–789.
    OpenUrlPubMed
  14. ↵
    1. Al-Hazzaa HM
    (1990) Physical Activity Profiles of College Male Subjects. Journal of King Saud University, 2.
  15. ↵
    1. Al-Nakeeb Y,
    2. Lyons M,
    3. Collins P,
    4. Al-Nuaim A,
    5. Al-Hazzaa H,
    6. Duncan MJ,
    7. et al.
    (2012) Obesity, physical activity and sedentary behavior amongst British and Saudi youth: a cross-cultural study. Int J Environ Res Public Health 9:1490–1506.
    OpenUrlPubMed
  16. ↵
    1. Taha AZ
    (2008) Self-reported knowledge and pattern of physical activity among school students in Al Khobar, Saudi Arabia. East Mediterr Health J 14:344–355.
    OpenUrlPubMed
  17. ↵
    1. Amin TT,
    2. Al Khoudair AS,
    3. Al Harbi MA,
    4. Al Ali AR
    (2012) Leisure time physical activity in Saudi Arabia: prevalence, pattern and determining factors. Asian Pac J Cancer Prev 13:351–360.
    OpenUrlPubMed
  18. ↵
    1. Al-Nozha MM,
    2. Al-Hazzaa HM,
    3. Arafah MR,
    4. Al-Khadra A,
    5. Al-Mazrou YY,
    6. Al-Maatouq MA,
    7. et al.
    (2007) Prevalence of physical activity and inactivity among Saudis aged 30-70 years. A population-based cross-sectional study. Saudi Med J 28:559–568.
    OpenUrlPubMedWeb of Science
  19. ↵
    1. Sidawi B,
    2. Al-Hariri MT
    (2012) The impact of built environment on diabetic patients: the case of Eastern Province, Kingdom of Saudi Arabia. Glob J Health Sci 4:126–138.
    OpenUrl
  20. ↵
    1. Almajwal AM
    (2015) Correlations of Physical Activity, Body Mass Index, Shift Duty, and Selected Eating Habits among Nurses in Riyadh, Saudi Arabia. Ecol Food Nutr 54:397–417.
    OpenUrl
  21. ↵
    1. Chang Y,
    2. Cheng Y,
    3. Yu Hsiang,
    4. Chuang LM
    (2013) Molecular Genetics of Metabolic Syndrome (eLS John Wiley & Sons Online Library).
  22. ↵
    1. Al-Daghri NM,
    2. Al-Attas OS,
    3. Alkharfy KM,
    4. Khan N,
    5. Mohammed AK,
    6. Vinodson B,
    7. et al.
    (2014) Association of VDR-gene variants with factors related to the metabolic syndrome, type 2 diabetes and vitamin D deficiency. Gene 542:129–133.
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Ntzani EE,
    2. Kavvoura FK
    (2012) Genetic risk factors for type 2 diabetes: insights from the emerging genomic evidence. Curr Vasc Pharmacol 10:147–155.
    OpenUrlCrossRefPubMed
  24. ↵
    1. Billings LK,
    2. Florez JC
    (2010) The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci 1212:59–77.
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Alharbi KK,
    2. Khan IA,
    3. Munshi A,
    4. Alharbi FK,
    5. Al-Sheikh Y,
    6. Alnbaheen MS
    (2014) Association of the genetic variants of insulin receptor substrate 1 (IRS-1) with type 2 diabetes mellitus in a Saudi population. Endocrine 47:472–477.
    OpenUrl
    1. Alharbi KK,
    2. Khan IA,
    3. Al-Daghri NM,
    4. Munshi A,
    5. Sharma V,
    6. Mohammed AK,
    7. et al.
    (2013) ABCA1 C69T gene polymorphism and risk of type 2 diabetes mellitus in a Saudi population. Journal of Biosciences 38:893–897.
    OpenUrlCrossRefPubMed
  26. ↵
    1. Al-Daghri NM,
    2. Alkharfy KM,
    3. Alokail MS,
    4. Alenad AM,
    5. Al-Attas OS,
    6. Mohammed AK,
    7. et al.
    (2014) Assessing the contribution of 38 genetic loci to the risk of type 2 diabetes in the Saudi Arabian Population. Clin Endocrinol (Oxf) 80:532–537.
    OpenUrl
  27. ↵
    1. Bazzi MD,
    2. Nasr FA,
    3. Alanazi MS,
    4. Alamri A,
    5. Turjoman AA,
    6. Moustafa AS,
    7. et al.
    (2014) Association between FTO, MC4R, SLC30A8, and KCNQ1 gene variants and type 2 diabetes in Saudi population. Genet Mol Res 13:10194–10203.
    OpenUrl
  28. ↵
    1. Filus A,
    2. Trzmiel A,
    3. Kuliczkowska-Plaksej J,
    4. Tworowska U,
    5. Jedrzejuk D,
    6. Milewicz A,
    7. et al.
    (2008) Relationship between vitamin D receptor BsmI and FokI polymorphisms and anthropometric and biochemical parameters describing metabolic syndrome. Aging Male 11:134–139.
    OpenUrlCrossRefPubMedWeb of Science
  29. ↵
    1. Bid HK,
    2. Konwar R,
    3. Aggarwal CG,
    4. Gautam S,
    5. Saxena M,
    6. Nayak VL,
    7. et al.
    (2009) Vitamin D receptor (FokI BsmI and TaqI) gene polymorphisms and type 2 diabetes mellitus: a North Indian study. Indian J Med Sci 63:187–194.
    OpenUrlCrossRefPubMed
  30. ↵
    1. Cauchi S,
    2. El Achhab Y,
    3. Choquet H,
    4. Dina C,
    5. Krempler F,
    6. Weitgasser R,
    7. et al.
    (2007) TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med (Ber) 85:777–782.
    OpenUrl
  31. ↵
    1. Vimaleswaran KS,
    2. Loos RJ
    (2010) Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med 12:e7.
    OpenUrlCrossRefPubMed
  32. ↵
    1. Grarup N,
    2. Andersen G,
    3. Krarup NT,
    4. Albrechtsen A,
    5. Schmitz O,
    6. Jørgensen T,
    7. et al.
    (2008) Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 57:2534–2540.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Ingelsson E,
    2. Langenberg C,
    3. Hivert M-F,
    4. Prokopenko I,
    5. Lyssenko V,
    6. Dupuis J,
    7. et al.
    (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. Diabetes 59:1266–1275.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Hatanaka M,
    2. Tanabe K,
    3. Yanai A,
    4. Ohta Y,
    5. Kondo M,
    6. Akiyama M,
    7. et al.
    (2011) Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells. Hum Mol Genet 20:1274–1284.
    OpenUrlCrossRefPubMedWeb of Science
  35. ↵
    1. Wang H,
    2. Antinozzi PA,
    3. Hagenfeldt KA,
    4. Maechler P,
    5. Wollheim CB
    (2000) Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. EMBO J 19:4257–4264.
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Xu H,
    2. Dembski M,
    3. Yang Q,
    4. Yang D,
    5. Moriarty A,
    6. Tayber O,
    7. et al.
    (2003) Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance. J Biol Chem 278:30187–30192.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Brunham LR,
    2. Kruit JK,
    3. Pape TD,
    4. Timmins JM,
    5. Reuwer AQ,
    6. Vasanji Z,
    7. et al.
    (2007) Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med 13:340–347.
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. Grarup N,
    2. Rose CS,
    3. Andersson EA,
    4. Andersen G,
    5. Nielsen AL,
    6. Albrechtsen A,
    7. et al.
    (2007) Studies of association of variants near the HHEX CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56:3105–3111.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Wang Q,
    2. Curran ME,
    3. Splawski I,
    4. Burn TC,
    5. Millholland JM,
    6. VanRaay TJ,
    7. et al.
    (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23.
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    1. Yamagata K,
    2. Senokuchi T,
    3. Lu M,
    4. Takemoto M,
    5. Fazlul Karim M,
    6. Go C,
    7. et al.
    (2011) Voltage-gated K(+) channel KCNQ1 regulates insulin secretion in MIN6 beta-cell line. Biochem Biophys Res Commun 407:620–625.
    OpenUrlCrossRefPubMed
  41. ↵
    1. Nelson DL,
    2. Cox MM
    (2008) Biosignaling. In: Lehninger Principles of Biochemistry (WH Freeman & Company, New York (NY)), 2nd ed.
  42. ↵
    1. Ehret GB
    (2010) Genome-Wide Association Studies: Contribution of Genomics to Understanding Blood Pressure and Essential Hypertension. Curr Hypertens Rep 12:17–25.
    OpenUrlCrossRefPubMedWeb of Science
  43. ↵
    1. Ji LD,
    2. Zhang LN,
    3. Xu J
    (2011) Genome-wide association studies of hypertension: achievements, difficulties and strategies. World J Hypertens 1:10–14.
    OpenUrl
  44. ↵
    1. Alghasham A,
    2. Settin AA,
    3. Ali A,
    4. Dowaidar M,
    5. Ismail H
    (2012) Association of MTHFR C677T and A1298C gene polymorphisms with hypertension. Int J Health Sci (Qassim) 6:3–11.
    OpenUrlCrossRefPubMed
    1. Ali A,
    2. Alghasham A,
    3. Ismail H,
    4. Dowaidar M,
    5. Settin A
    (2013) ACE I/D and eNOS E298D gene polymorphisms in Saudi subjects with hypertension. J Renin Angiotensin Aldosterone Syst 14:348–353.
    OpenUrlCrossRefPubMed
  45. ↵
    1. Alghasham A,
    2. Ali A,
    3. Ismail H,
    4. Dowaidar M,
    5. Settin AA
    (2012) CYP2J2-50 G/T and ADRB2 G46A gene polymorphisms in Saudi subjects with hypertension. Genet Test Mol Biomarkers 16:1027–1031.
    OpenUrlCrossRefPubMed
  46. ↵
    1. Srivastava K,
    2. Sundriyal R,
    3. Meena PC,
    4. Bhatia J,
    5. Narang R,
    6. Saluja D
    (2012) Association of angiotensin converting enzyme (insertion/deletion) gene polymorphism with essential hypertension in northern Indian subjects. Genet Test Mol Biomarkers 16:174–177.
    OpenUrlCrossRefPubMed
  47. ↵
    1. Xi B,
    2. Shen Y,
    3. Zhao X,
    4. Chandak GR,
    5. Cheng H,
    6. Hou D,
    7. et al.
    (2014) Association of common variants in/near six genes (ATP2B1, CSK, MTHFR, CYP17A1, STK39 and FGF5) with blood pressure/hypertension risk in Chinese children. J Hum Hypertens 28:32–36.
    OpenUrlCrossRefPubMed
  48. ↵
    1. Frosst P,
    2. Blom HJ,
    3. Milos R,
    4. Goyette P,
    5. Sheppard CA,
    6. Matthews RG,
    7. et al.
    (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113.
    OpenUrlCrossRefPubMedWeb of Science
  49. ↵
    1. Stehouwer CD,
    2. van Guldener C
    (2003) Does homocysteine cause hypertension? Clin Chem Lab Med 41:1408–1411.
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    1. Baudin B
    (2002) New aspects on angiotensin-converting enzyme: from gene to disease. Clin Chem Lab Med 40:256–265.
    OpenUrlCrossRefPubMedWeb of Science
  51. ↵
    1. Roman RJ
    (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185.
    OpenUrlCrossRefPubMedWeb of Science
  52. ↵
    1. Alharbi KK,
    2. Richardson TG,
    3. Khan IA,
    4. Syed R,
    5. Mohammed AK,
    6. Boustred CR,
    7. et al.
    (2014) Influence of adiposity-related genetic markers in a population of Saudi Arabians where other variables influencing obesity may be reduced. Dis Markers 2014:758232.
    OpenUrl
  53. ↵
    1. Al-Daghri NM,
    2. Alkharfy KM,
    3. Al-Attas OS,
    4. Krishnaswamy S,
    5. Mohammed AK,
    6. Albagha OM,
    7. et al.
    (2014) Association between type 2 diabetes mellitus-related SNP variants and obesity traits in a Saudi population. Mol Biol Rep 41:1731–1740.
    OpenUrl
  54. ↵
    1. Daghestani MH,
    2. Warsy A,
    3. Al-Odaib AN,
    4. Eldali A,
    5. Al-Eisa NA,
    6. Omer SA,
    7. et al.
    (2012) Arginine 16 Glycine Polymorphism in β2-Adrenergic Receptor Gene is Associated with Obesity, Hyperlipidemia, Hyperleptinemia and Insulin Resistance in Saudis. Int J Endocrinol 2012:945608.
    OpenUrlPubMed
  55. ↵
    1. Dell’Angelica EC,
    2. Ohno H,
    3. Ooi CE,
    4. Rabinovich E,
    5. Roche KW,
    6. Bonifacino JS
    (1997) AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J 16:917–928.
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Kooner JS,
    2. Saleheen D,
    3. Sim X,
    4. Sehmi J,
    5. Zhang W,
    6. Frossard P,
    7. et al.
    (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet 43:984–989.
    OpenUrlCrossRefPubMed
  57. ↵
    1. McCaffery JM,
    2. Papandonatos GD,
    3. Peter I,
    4. Huggins GS,
    5. Raynor HA,
    6. Delahanty LM,
    7. et al.
    (2012) Obesity susceptibility loci and dietary intake in the Look AHEAD Trial. Am J Clin Nutr 95:1477–1486.
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Zeggini E,
    2. Scott LJ,
    3. Saxena R,
    4. Voight BF,
    5. Marchini JL,
    6. Hu T,
    7. et al.
    (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645.
    OpenUrlCrossRefPubMedWeb of Science
  59. ↵
    1. Frayling TM,
    2. Timpson NJ,
    3. Weedon MN,
    4. Zeggini E,
    5. Freathy RM,
    6. Lindgren CM,
    7. et al.
    (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894.
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Boes E,
    2. Coassin S,
    3. Kollerits B,
    4. Heid IM,
    5. Kronenberg F
    (2009) Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: a systematic in-depth review. Exp Gerontol 44:136–160.
    OpenUrlCrossRefPubMed
  61. ↵
    1. Falconer DS,
    2. Mackay TFC
    (1996) Introduction to quantitative genetics (Benjamin Cummings, San Francisco (SF)).
  62. ↵
    1. Neel JV
    (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? American Journal of Human Genetics 14:353–362.
    OpenUrlPubMedWeb of Science
  63. ↵
    1. el-Hazmi MA,
    2. al-Swailem AR,
    3. Warsy AS,
    4. al-Swailem AM,
    5. Sulaimani R,
    6. al-Meshari AA
    (1995) Consanguinity among the Saudi Arabian population. J Med Genet 32:623–626.
    OpenUrlAbstract/FREE Full Text
    1. El Mouzan MI,
    2. Al Salloum AA,
    3. Al Herbish AS,
    4. Qurachi MM,
    5. Al Omar AA
    (2008) Consanguinity and major genetic disorders in Saudi children: a community-based cross-sectional study. Ann Saudi Med 28:169–173.
    OpenUrlCrossRefPubMedWeb of Science
  64. ↵
    1. El-Mouzan MI,
    2. Al-Salloum AA,
    3. Al-Herbish AS,
    4. Qurachi MM,
    5. Al-Omar AA
    (2007) Regional variations in the prevalence of consanguinity in Saudi Arabia. Saudi Med J 28:1881–1884.
    OpenUrlPubMed
  65. ↵
    1. Bener A,
    2. Zirie M,
    3. Al-Rikabi A
    (2005) Genetics, obesity, and environmental risk factors associated with type 2 diabetes. Croat Med J 46:302–307.
    OpenUrlPubMed
    1. Anokute CC
    (1992) Suspected synergism between consanguinity and familial aggregation in type 2 diabetes mellitus in Saudi Arabia. J R Soc Health 112:167–169.
    OpenUrlPubMed
  66. ↵
    1. Gosadi IM,
    2. Goyder EC,
    3. Teare MD
    (2014) Investigating the potential effect of consanguinity on type 2 diabetes susceptibility in Saudi population. Hum Hered 77:197–206.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 37 (1)
Saudi Medical Journal
Vol. 37, Issue 1
1 Jan 2016
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia
Ibrahim M. Gosadi
Saudi Medical Journal Jan 2016, 37 (1) 12-20; DOI: 10.15537/smj.2016.1.12675

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia
Ibrahim M. Gosadi
Saudi Medical Journal Jan 2016, 37 (1) 12-20; DOI: 10.15537/smj.2016.1.12675
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire