Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
NewsThe Cochrane Library
Open Access

STAINING CYCLES WITH BLACK HOLES ULTRAFAST REPEATED STAINING AND DESTAINING OF CELL SAMPLES FOR TUMOR DIAGNOSTICS

Saudi Medical Journal April 2020, 41 (4) 439;
  • Article
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

MARCH 25, 2020 - In the treatment of tumors, microenvironment plays an important role. It often contains immune cells that are so changed that they promote tumor growth. In the journal Angewandte Chemie, scientists have introduced a method by which cell samples from tumors and their surroundings can rapidly (under 1 hour) be cycled through staining, destaining, and then restaining with fluorescent antibodies—through attachment of a “black hole quencher” (fluorescence quencher) by means of “click chemistry”.

To effectively and precisely fight a tumor, it is important to specifically characterize not only the cells of the tumor but also those in its microenvironment, including tumor-infiltrating immune cells. Until now, analyses of these dynamic changes with conventional biopsies and tissue sections could take days to weeks, or not occur at all prior to treatment. One alternative method is fine needle aspiration, in which only a few thousand cells are taken from different parts of a tumor and its surroundings. This method has few risks and is faster because it does not require embedding or sectioning. However, to obtain a representative estimate of the immune cell populations in the tumor’s microenvironment, many different stains must be carried out. Because the number of cells is so small, this means that the same sample must be repeatedly stained, destained, and stained again. However, the cells are too delicate for conventional, harsh destaining, and the procedures would take too long.

A team headed by Jonathan Carlson and Ralph Weissleder at the Massachusetts General Hospital Research Institute and Harvard Medical School (Boston, MA, USA) has now developed an ultrafast, highly efficient, and gentle cyclic method for multiplexed protein profiling of individual cells, which allows for numerous different stainings. Instead of splitting off the dye or bleaching it, the fluorescence of the stain is simply “switched off” with a black hole quencher. Black hole quenchers absorb the energy of a fluorescence dye over the entire visible spectrum and convert it to heat as soon as they get near enough. This switches off the glow of the dye.

The method goes like this: using a connector that contains a trans-cyclooctene group, a fluorescent dye is attached to antibodies that specifically recognize the characteristic marker molecules of the cells. If the target marker is in a given sample, the antibody binds to it and the fluorescence can be detected. Then the quencher carrying a tetrazine group is added. Using this tetrazine group and the trans-cyclooctene, the quencher can simply be attached by being “clicked” on as though with a snap (hence the term click chemistry for this type of reaction). The quencher is thus site-specifically and very quickly and efficiently brought near to the dye, immediately quenching its fluorescence. The rapidity of this click reaction is remarkable, running orders of magnitude faster than expected. The reason for this may be the strong interaction between the fluorescence dye and the quencher.

The next fluorescent antibody can be applied immediately after the fluorescence quenching. The researchers were able to stain twelve different marker molecules in a sample within one hour. This makes it possible to rapidly characterize the immune cell populations in tumors to select the most suitable treatments.

Full citation: Ralph Weissleder et al., Angewandte Chemie International Edition, 10.1002/anie.201915153. doi.org/10.1002/anie.201915153. URL Upon Publication: https://csb.mgh.harvard.edu/weissleder

Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd., reproduced with permission.

  • Copyright: © Saudi Medical Journal

This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PreviousNext
Back to top

In this issue

Saudi Medical Journal: 41 (4)
Saudi Medical Journal
Vol. 41, Issue 4
1 Apr 2020
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
STAINING CYCLES WITH BLACK HOLES ULTRAFAST REPEATED STAINING AND DESTAINING OF CELL SAMPLES FOR TUMOR DIAGNOSTICS
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
STAINING CYCLES WITH BLACK HOLES ULTRAFAST REPEATED STAINING AND DESTAINING OF CELL SAMPLES FOR TUMOR DIAGNOSTICS
Saudi Medical Journal Apr 2020, 41 (4) 439;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
STAINING CYCLES WITH BLACK HOLES ULTRAFAST REPEATED STAINING AND DESTAINING OF CELL SAMPLES FOR TUMOR DIAGNOSTICS
Saudi Medical Journal Apr 2020, 41 (4) 439;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Global study assesses teen vaping
  • Is children’s reading ability affected by their sleep?
  • How have people’s daily activities affected mood during the COVID-19 pandemic?
Show more The Cochrane Library

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire