Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticaleReview Article
Open Access

Bacteriophage treatment as an alternative therapy for multidrug-resistant bacteria

Abdulaziz Alqahtani
Saudi Medical Journal December 2023, 44 (12) 1222-1231; DOI: https://doi.org/10.15537/smj.2023.44.12.20230366
Abdulaziz Alqahtani
From the Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia.
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Abdulaziz Alqahtani
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Murray CJ,
    2. Ikuta KS,
    3. Sharara F,
    4. Swetschinski L,
    5. Robles Aguilar G,
    6. Gray A, et al.
    Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022; 399: 629–655.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. van Duin D,
    2. Paterson DL
    . Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect Dis Clin North Am 2016; 30: 377–390.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Lin DM,
    2. Koskella B,
    3. Lin HC
    . Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017; 8: 162–173.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Moghadam MT,
    2. Khoshbayan A,
    3. Chegini Z,
    4. Farahani I,
    5. Shariati A
    . Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: Lesson from animal models and clinical trials. Drug Des Devel Ther 2020; 14: 1867–1883.
    OpenUrl
  5. 5.↵
    1. Peleg AY,
    2. Seifert H,
    3. Paterson DL
    . Acinetobacter baumannii: Emergence of a successful pathogen. Clin Microbiol Rev 2008; 21: 538–582.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Manchanda V,
    2. Sanchaita S,
    3. Singh N
    . Multidrug resistant Acinetobacter. J Glob Infect Dis 2010; 2: 291–304.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Al-Ouqaili MTS,
    2. Jaloot AS,
    3. Badawy AS
    . Identification of an OprD and bla IMP gene-mediated carbapenem resistance in Acinetobacter baumannii and Pseudomonas aeruginosa among patients with wound infections in Iraq. Asian J Pharm 2018; 12.
  8. 8.↵
    1. Falagas ME,
    2. Kasiakou SK
    . Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 2005; 40: 1333–1341.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Pang Z,
    2. Raudonis R,
    3. Glick BR,
    4. Lin TJ,
    5. Cheng Z
    . Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37: 177–192.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Paterson DL,
    2. Bonomo RA
    . Extended-spectrum β-lactamases: A clinical update. Clin Microbiol Rev 2005; 18: 657–686.
    OpenUrlAbstract/FREE Full Text
  11. 11.
    1. Khan F,
    2. Khan A,
    3. Kazmi SU
    . Prevalence and susceptibility pattern of multi drug resistant clinical isolates of Pseudomonas aeruginosa in Karachi. Pak J Med Sci 2014; 30: 951–954.
    OpenUrl
  12. 12.
    1. Kamali E,
    2. Jamali A,
    3. Ardebili A,
    4. Ezadi F,
    5. Mohebbi A
    . Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes 2020; 13.
  13. 13.↵
    1. Ruiz-Roldán L,
    2. Bellés A,
    3. Bueno J,
    4. Azcona-Gutiérrez JM,
    5. Rojo-Bezares B,
    6. Torres C, et al.
    Pseudomonas aeruginosa isolates from spanish children: Occurrence in faecal samples, antimicrobial resistance, virulence, and molecular typing. Biomed Res Int 2018; 2018.
  14. 14.↵
    1. Saderi H,
    2. Owlia P
    . Detection of multidrug resistant (MDR) and extremely drug resistant (XDR) Pseudomonas aeruginosa isolated from patients in Tehran, Iran. Iran J Pathol 2015; 10: 265–2671.
    OpenUrl
  15. 15.↵
    1. Al-Qaysi AMK,
    2. Al-Ouqaili MTS,
    3. Al-Meani SAL
    . Ciprofloxacin- and gentamicin-mediated inhibition of Pseudomonas aeruginosa biofilms is enhanced when combined the volatile oil from Eucalyptus camaldulensis. Sys Rev Pharm 2020; 11: 98–105.
    OpenUrl
  16. 16.↵
    1. Fernandes M,
    2. Vira D,
    3. Medikonda R,
    4. Kumar N
    . Extensively and pan-drug resistant Pseudomonas aeruginosa keratitis: clinical features, risk factors, and outcome. Graefe’s Archive for Clinical and Experimental Ophthalmology 2016; 254:315–322.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Stefani S,
    2. Chung DR,
    3. Lindsay JA,
    4. Friedrich AW,
    5. Kearns AM,
    6. Westh H, et al.
    Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 2012; 39: 273–282.
    OpenUrlCrossRefPubMed
  18. 18.↵
    Mayo Clinic. MRSA infection [Updated 2022; cited 2023 May 17]. Available from: https://www.mayoclinic.org/diseases-conditions/mrsa/symptoms-causes/syc-20375336
  19. 19.
    1. Kyriakidis I,
    2. Vasileiou E,
    3. Pana ZD,
    4. Tragiannidis A
    . Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 2021; 10: 373.
    OpenUrl
  20. 20.↵
    1. Chanishvili N
    . Phage therapy-history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res 2012; 83: 3–40.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Melo LDR,
    2. Oliveira H,
    3. Pires DP,
    4. Dabrowska K,
    5. Azeredo J
    . Phage therapy efficacy: A review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46: 78–99.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Liu D,
    2. van Belleghem JD,
    3. de Vries CR,
    4. Burgener E,
    5. Chen Q,
    6. Manasherob R, et al.
    The safety and toxicity of phage therapy: A review of animal and clinical studies. Viruses 2021; 13: 1268.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Ebrahimi S,
    2. Sisakhtpour B,
    3. Mirzaei A,
    4. Karbasizadeh V,
    5. Moghim S
    . Efficacy of isolated bacteriophage against biofilm embedded colistin-resistant Acinetobacter baumannii. Gene Rep 2021; 22: 100984.
    OpenUrl
  24. 24.↵
    1. Zhou W,
    2. Feng Y,
    3. Zong Z
    . Two new lytic bacteriophages of the Myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 2018; 9: 850.
    OpenUrl
  25. 25.↵
    1. Wang JL,
    2. Kuo CF,
    3. Yeh CM,
    4. Chen JR,
    5. Cheng MF,
    6. Hung CH
    . Efficacy of ϕkm18p phage therapy in a murine model of extensively drug-resistant Acinetobacter baumannii infection. Infect Drug Resist 2018; 11: 2301–2310.
    OpenUrlCrossRef
  26. 26.↵
    1. Shokri D,
    2. Soleimani-Delfan A,
    3. Fatemi SM
    . Assessment of phage cocktails with extended host range activity against antibiotic resistant strains of Pseudomonas aeruginosa. Comp Clin Path 2017; 25: 1–6.
    OpenUrl
  27. 27.↵
    1. Yuan Y,
    2. Qu K,
    3. Tan D,
    4. Li X,
    5. Wang L,
    6. Cong C, et al.
    Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microb Pathog 2019; 128: 329–336.
    OpenUrl
  28. 28.↵
    1. Barros J,
    2. Melo LDR,
    3. Poeta P,
    4. Igrejas G,
    5. Ferraz MP,
    6. Azeredo J, et al.
    Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Int J Antimicrob Agents 2019; 54: 329–337.
    OpenUrl
  29. 29.↵
    1. Takemura-Uchiyama I,
    2. Uchiyama J,
    3. Osanai M,
    4. Morimoto N,
    5. Asagiri T,
    6. Ujihara T, et al.
    Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect 2014; 16: 512–517.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Ding B,
    2. Li Q,
    3. Guo M,
    4. Dong K,
    5. Zhang Y,
    6. Guo X, et al.
    Prevention of dermal abscess formation caused by Staphylococcus aureus using phage JD007 in nude mice. Front Microbiol 2018; 23: 1553.
    OpenUrl
  31. 31.↵
    1. Al-Ouqaili MTS,
    2. Al-Kubaisy SHM,
    3. Al-Ani NFI
    . Biofilm antimicrobial susceptibility pattern for selected antimicrobial agents against planktonic and sessile cells of clinical isolates of staphylococci using MICs, BICs and MBECs. Asian J Pharm 2018; 12.
  32. 32.↵
    1. Loc-Carrillo C,
    2. Abedon ST
    . Pros and cons of phage therapy. Bacteriophage 2011; 1: 111–114.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Haddad Kashani H,
    2. Schmelcher M,
    3. Sabzalipoor H,
    4. Seyed Hosseini E,
    5. Moniri R
    . Recombinant endolysins as potential therapeutics against antibiotic-resistant staphylococcus aureus: Current status of research and novel delivery strategies. Clin Microbiol Rev 2018; 31.
  34. 34.↵
    1. Blasco L,
    2. Ambroa A,
    3. trastoy R,
    4. Bleriot I,
    5. Moscoso M,
    6. Fernández-Garcia L
    , et al. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep 2020; 10: 7163.
    OpenUrlCrossRef
  35. 35.
    1. Taha OA,
    2. Connerton PL,
    3. Connerton IF,
    4. El-Shibiny A
    . Bacteriophage ZCKP1: A potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front Microbiol 2018; 9: 2127.
    OpenUrl
  36. 36.
    1. Lehman SM,
    2. Mearns G,
    3. Rankin D,
    4. Cole RA,
    5. Smrekar F,
    6. Branston SD, et al.
    Design and preclinical development of a phage product for the treatment of antibiotic-resistant staphylococcus aureus infections. Viruses 2019; 11: 88.
    OpenUrlCrossRef
  37. 37.
    1. Hua Y,
    2. Luo T,
    3. Yang Y,
    4. Dong D,
    5. Wang R,
    6. Wang Y, et al.
    Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front Microbiol 2018; 8: 2659.
    OpenUrlCrossRef
  38. 38.
    1. Cao F,
    2. Wang X,
    3. Wang L,
    4. Li Z,
    5. Che J,
    6. Wang L, et al.
    Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance klebsiella pneumoniae in mice. Biomed Res Int 2015; 2015: 752930.
    OpenUrl
  39. 39.↵
    1. Kortright KE,
    2. Chan BK,
    3. Koff JL,
    4. Turner PE
    . Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019; 25: 219–232.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. LaVergne S,
    2. Hamilton T,
    3. Biswas B,
    4. Kumaraswamy M,
    5. Schooley RT,
    6. Wooten D
    . Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis 2018; 5: ofy064.
    OpenUrlCrossRef
  41. 41.↵
    1. Khawaldeh A,
    2. Morales S,
    3. Dillon B,
    4. Alavidze Z,
    5. Ginn AN,
    6. Thomas L, et al.
    Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol 2011; 60: 1697–1700.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Ujmajuridze A,
    2. Chanishvili N,
    3. Goderdzishvili M,
    4. Leitner L,
    5. Mehnert U,
    6. Chkhotua A, et al.
    Adapted bacteriophages for treating urinary tract infections. Front Microbiol 2018; 9: 1832.
    OpenUrlCrossRef
  43. 43.↵
    1. Dedrick RM,
    2. Guerrero-Bustamante CA,
    3. Garlena RA,
    4. Russell DA,
    5. Ford K,
    6. Harris K, et al.
    Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 2019; 25: 730–733.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Ooi ML,
    2. Drilling AJ,
    3. Morales S,
    4. Fong S,
    5. Moraitis S,
    6. MacIas-Valle L, et al.
    Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg 2019; 145: 723–729.
    OpenUrl
  45. 45.
    1. Schooley RT,
    2. Biswas B,
    3. Gill JJ,
    4. Hernandez-Morales A,
    5. Lancaster J,
    6. Lessor L, et al.
    Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 2017; 61: e00954–17.
    OpenUrlPubMed
  46. 46.
    1. Duplessis C,
    2. Biswas B,
    3. Hanisch B,
    4. Perkins M,
    5. Henry M,
    6. Quinones J, et al.
    Refractory Pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J Pediatric Infect Dis Soc 2018; 7: 253–256.
    OpenUrlCrossRefPubMed
  47. 47.
    1. Chan BK,
    2. Turner PE,
    3. Kim S,
    4. Mojibian HR,
    5. Elefteriades JA,
    6. Narayan D
    . Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 2018; 2018: 60–66.
    OpenUrlCrossRefPubMed
  48. 48.
    1. Doub JB,
    2. Ng VY,
    3. Johnson AJ,
    4. Slomka M,
    5. Fackler J,
    6. Horne B, et al.
    Salvage bacteriophage therapy for a chronic MRSA prosthetic joint infection. Antibiotics 2020; 9: 241.
    OpenUrl
  49. 49.
    1. Corbellino M,
    2. Kieffer N,
    3. Kutateladze M,
    4. Balarjishvili N,
    5. Leshkasheli L,
    6. Askilashvili L, et al.
    Eradication of a multidrug-resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation. Clin Infect Dis 2020; 70: 1998–2001.
    OpenUrl
  50. 50.↵
    1. Mah TFC,
    2. O’Toole GA
    . Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9: 34–39.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.↵
    1. Al-Ouqaili MTS,
    2. Al-Taei SA,
    3. Al-Najjar A
    . Molecular detection of medically important carbapenemases genes expressed by metallo-β-lactamase producer isolates of Pseudomonas aeruginosa and klebsiella pneumoniae. Asian J Pharm 2018; 12: 991.
    OpenUrl
  52. 52.↵
    1. Nickel JC,
    2. Ruseska I,
    3. Wright JB,
    4. Costerton JW
    . Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 1985; 27: 619–624.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Hoyle BD,
    2. Jass J,
    3. Costerton JW
    . The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother 1990; 26: 1–5.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.↵
    1. Wentland EJ,
    2. Stewart PS,
    3. Huang CT,
    4. McFeters GA
    . Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol Prog 1996; 12: 316–321.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Chang C,
    2. Yu X,
    3. Guo W,
    4. Guo C,
    5. Guo X,
    6. Li Q, et al.
    Bacteriophage-mediated control of biofilm: A promising new dawn for the future. Front Microbiol 2022; 13: 825828.
    OpenUrl
  56. 56.↵
    1. Adnan M,
    2. Ali Shah MR,
    3. Jamal M,
    4. Jalil F,
    5. Andleeb S,
    6. Nawaz MA, et al.
    Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals 2020; 63: 89–96.
    OpenUrl
  57. 57.↵
    1. Grygorcewicz B,
    2. Wojciuk B,
    3. Roszak M,
    4. Łubowska N,
    5. Blstrokaejczak P,
    6. Jursa-Kulesza J, et al.
    Environmental Phage-Based Cocktail and Antibiotic Combination Effects on Acinetobacter baumannii Biofilm in a Human Urine Model. Microb Drug Resist 2021; 27: 25–35.
    OpenUrl
  58. 58.
    1. Jamal M,
    2. Hussain T,
    3. Rajanna Das C,
    4. Andleeb S
    . Characterization of siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol 2015; 64: 454–462.
    OpenUrlCrossRefPubMed
  59. 59.
    1. Gu Y,
    2. Xu Y,
    3. Xu J,
    4. Yu X,
    5. Huang X,
    6. Liu G, et al.
    Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl Microbiol Biotechnol 2019; 103: 315–326.
    OpenUrlCrossRef
  60. 60.
    1. Rizzo NN,
    2. Pottker ES,
    3. Webber B,
    4. Borges KA,
    5. Duarte SC,
    6. Levandowski R, et al.
    Effect of two lytic bacteriophages against multidrug-resistant and biofilm-forming Salmonella gallinarum from poultry. Br Poult Sci 2020; 61: 640–645.
    OpenUrl
  61. 61.↵
    1. Cha Y,
    2. Chun J,
    3. Son B,
    4. Ryu S
    . Characterization and genome analysis of Staphylococcus aureus podovirus CSA13 and its anti-biofilm capacity. Viruses 2019; 11: 54.
    OpenUrlCrossRef
  62. 62.
    1. Jamal M,
    2. Andleeb S,
    3. Jalil F,
    4. Imran M,
    5. Nawaz MA,
    6. Hussain T, et al.
    Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae. Folia Microbiol 2019; 64: 101–111.
    OpenUrl
  63. 63.
    1. Rakov C,
    2. Porat S ben,
    3. Alkalay-Oren S,
    4. Yerushalmy O,
    5. Abdalrhman M,
    6. Gronovich N
    , et al. Targeting biofilm of MDR Providencia stuartii by phages using a catheter model. Antibiotics 2021; 10: 375.
    OpenUrl
  64. 64.
    1. Wu Y,
    2. Wang R,
    3. Xu M,
    4. Liu Y,
    5. Zhu X,
    6. Qiu J, et al.
    A novel polysaccharide depolymerase encoded by the phage sh-kp152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 2019; 10: 2768.
    OpenUrlCrossRef
  65. 65.
    1. Wintachai P,
    2. Surachat K,
    3. Singkhamanan K
    . Isolation and characterization of a novel autographiviridae phage and its combined effect with tigecycline in controlling multidrug-resistant acinetobacter baumannii-associated skin and soft tissue infections. Viruses 2022; 14: 194.
    OpenUrl
  66. 66.↵
    1. Abedon ST,
    2. García P,
    3. Mullany P,
    4. Aminov R
    . Editorial: Phage therapy: Past, present and future. Front Microbiol 2017; 8: 981.
    OpenUrlCrossRef
  67. 67.↵
    1. Caflisch KM,
    2. Suh GA,
    3. Patel R
    . Biological challenges of phage therapy and proposed solutions: A literature review. Expert Rev Anti Infect Ther 2019; 17: 1011–1041.
    OpenUrlCrossRef
  68. 68.↵
    1. Kon K,
    2. Rai M
    . The Potential Use of Bacteriophage Therapy as a Treatment Option in a Post-Antibiotic Era. In: Antibiotic Resistance Mechanisms and New Antimicrobial Approaches. Elsevier 2016.
  69. 69.↵
    1. Le S,
    2. Yao X,
    3. Lu S,
    4. Tan Y,
    5. Rao X,
    6. Li M, et al.
    Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Sci Rep. 2014; 4: 4738.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Clokie MRJ,
    2. Millard AD,
    3. Letarov AV,
    4. Heaphy S
    . Phages in nature. Bacteriophage 2011; 1: 31–45.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 44 (12)
Saudi Medical Journal
Vol. 44, Issue 12
1 Dec 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Bacteriophage treatment as an alternative therapy for multidrug-resistant bacteria
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Bacteriophage treatment as an alternative therapy for multidrug-resistant bacteria
Abdulaziz Alqahtani
Saudi Medical Journal Dec 2023, 44 (12) 1222-1231; DOI: 10.15537/smj.2023.44.12.20230366

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Bacteriophage treatment as an alternative therapy for multidrug-resistant bacteria
Abdulaziz Alqahtani
Saudi Medical Journal Dec 2023, 44 (12) 1222-1231; DOI: 10.15537/smj.2023.44.12.20230366
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Phage Therapy: Navigating the Mechanisms, Benefits, and Challenges in the Fight Against Multidrug-Resistant Infections
  • Receptors Determine Lytic Phage Host Range in Pseudomonas aeruginosa
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • multidrug-resistant (MDR) bacteria
  • bacterial infections
  • bacteriophages
  • phage therapy
  • biofilms

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire