Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes

Gang Wang and Guixia Wang
Saudi Medical Journal March 2025, 46 (3) 213-225; DOI: https://doi.org/10.15537/smj.2025.46.3.20240920
Gang Wang
From the Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China.
MM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Guixia Wang
From the Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China.
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Guixia Wang
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Polito L,
    2. Bortolotti M,
    3. Battelli MG,
    4. Bolognesi A
    . Chronic kidney disease: which role for xanthine oxidoreductase activity and products? Pharmacol Res 2022; 184: 106407.
    OpenUrlPubMed
  2. 2.↵
    1. Lin S
    . Interpretation of Chinese guidelines for the diagnosis and treatment of hyperuricemia and gout (2019). J Clin Intern Med 2020; 37: 460-462.
    OpenUrl
  3. 3.↵
    1. Leask MP,
    2. Merriman TR
    . The genetic basis of urate control and gout: insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol 2021; 35: 101721.
    OpenUrl
  4. 4.↵
    1. Boocock J,
    2. Leask M,
    3. Okada Y,
    4. Matsuo H,
    5. Kawamura Y,
    6. Shi Y, et al.
    Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum Mol Genet 2020; 29: 923-943.
    OpenUrlPubMed
  5. 5.↵
    1. Reynolds RJ,
    2. Irvin MR,
    3. Bridges SL,
    4. Kim H,
    5. Merriman TR,
    6. Arnett DK, et al.
    Genetic correlations between traits associated with hyperuricemia, gout, and comorbidities. Eur J Hum Genet 2021; 29: 1438-1445.
    OpenUrlPubMed
  6. 6.↵
    1. Luo Y,
    2. Wu Q,
    3. Meng R,
    4. Lian F,
    5. Jiang C,
    6. Hu M, et al.
    Associations of serum uric acid with cardiovascular disease risk factors: a retrospective cohort study in southeastern China. BMJ Open 2023; 13: e073930.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Raya-Cano E,
    2. Vaquero-Abellán M,
    3. Molina-Luque R,
    4. De Pedro-Jiménez D,
    5. Molina-Recio G,
    6. Romero-Saldaña M
    . Association between metabolic syndrome and uric acid: a systematic review and meta-analysis. Sci Rep 2022; 12: 18412.
    OpenUrlPubMed
  8. 8.↵
    1. Borghi C,
    2. Agabiti-Rosei E,
    3. Johnson RJ,
    4. Kielstein JT,
    5. Lurbe E,
    6. Mancia G, et al.
    Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur J Intern Med 2020; 80: 1-11.
    OpenUrlPubMed
  9. 9.↵
    1. Saito Y,
    2. Tanaka A,
    3. Node K,
    4. Kobayashi Y
    . Uric acid and cardiovascular disease: a clinical review. J Cardiol 2021; 78: 51-57.
    OpenUrlPubMed
  10. 10.↵
    1. Morikawa N,
    2. Bancks MP,
    3. Yano Y,
    4. Kuwabara M,
    5. Gaffo AL,
    6. Duprez DA, et al.
    Serum urate trajectory in young adulthood and incident cardiovascular disease events by middle age: CARDIA study. Hypertension 2021; 78: 1211-1218.
    OpenUrl
  11. 11.↵
    1. Mao T,
    2. He Q,
    3. Yang J,
    4. Jia L,
    5. Xu G
    . Relationship between gout, hyperuricemia, and obesity-does central obesity play a significant role?-a study based on the NHANES database. Diabetol Metab Syndr 2024; 16: 24.
    OpenUrlPubMed
  12. 12.↵
    1. Liu N,
    2. Xu H,
    3. Sun Q,
    4. Yu X,
    5. Chen W,
    6. Wei H, et al.
    The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors. Oxid Med Cell Longev 2021; 2021: 1470380.
    OpenUrlPubMed
  13. 13.↵
    1. Du L,
    2. Zong Y,
    3. Li H,
    4. Wang Q,
    5. Xie L,
    6. Yang B, et al.
    Hyperuricemia and its related diseases: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9: 212.
    OpenUrlPubMed
  14. 14.↵
    1. Kodama S,
    2. Saito K,
    3. Yachi Y,
    4. Asumi M,
    5. Sugawara A,
    6. Totsuka K, et al.
    Association between serum uric acid and development of type 2 diabetes. Diabetes Care 2009; 32: 1737-1742.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Verma S,
    2. Ji Q,
    3. Bhatt DL,
    4. Mazer CD,
    5. Al-Omran M,
    6. Inzucchi SE, et al.
    Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes: a subanalysis of EMPA-REG outcome. Diabetes Obes Metab 2020; 22: 1207-1214.
    OpenUrlPubMed
  16. 16.↵
    1. Zhou Q,
    2. Ke S,
    3. Yan Y,
    4. Guo Y,
    5. Liu Q
    . Serum uric acid is associated with chronic kidney disease in elderly Chinese patients with diabetes. Ren Fail 2023; 45: 2238825.
    OpenUrlPubMed
  17. 17.↵
    1. Diallo A,
    2. Diallo MF,
    3. Carlos-Bolumbu M,
    4. Galtier F
    . Uric acid-lowering effects of sodium-glucose cotransporter 2 inhibitors for preventing cardiovascular events and mortality: a systematic review and meta-analysis. Diabetes Obes Metab 2024; 26: 1980-1985.
    OpenUrlPubMed
  18. 18.↵
    1. Zelniker TA,
    2. Braunwald E
    . Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75: 422-434.
    OpenUrlFREE Full Text
  19. 19.↵
    1. Hamed K,
    2. Alosaimi MN,
    3. Ali BA,
    4. Alghamdi A,
    5. Alkhashi T,
    6. Alkhaldi SS, et al.
    Glucagon-like peptide-1 (GLP-1) receptor agonists: exploring their impact on diabetes, obesity, and cardiovascular health through a comprehensive literature review. Cureus 2024; 16: e68390.
    OpenUrl
  20. 20.↵
    1. Gregorio F,
    2. Manfrini S,
    3. Testa I,
    4. Filipponi P
    . Metformin treatment in elderly type II diabetic patients. Arch Gerontol Geriatr 1996; 22: 261-270.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Barskova VG,
    2. Eliseev MS,
    3. Kudaeva FM,
    4. Aleksandrova EN,
    5. Volkov AV,
    6. Nasonova VA, et al.
    [Effect of metformin on the clinical course of gout and insulin resistance]. Klin Med (Mosk) 2009; 87: 41-46. [In Russian].
    OpenUrlPubMed
  22. 22.↵
    1. Gokcel A,
    2. Gumurdulu Y,
    3. Karakose H,
    4. Melek Ertorer E,
    5. Tanaci N,
    6. BascilTutuncu N
    , et al. Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity. Diabetes Obes Metab 2002; 4: 49-55.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Krzystek-Korpacka M,
    2. Patryn E,
    3. Kustrzeba-Wojcicka I,
    4. Chrzanowska J,
    5. Gamian A,
    6. Noczynska A
    . The effect of a one-year weight reduction program on serum uric acid in overweight/obese children and adolescents. Clin Chem Lab Med 2011; 49: 915-921.
    OpenUrlPubMed
  24. 24.↵
    1. Pina AF,
    2. Borges DO,
    3. Meneses MJ,
    4. Branco P,
    5. Birne R,
    6. Vilasi A, et al.
    Insulin: trigger and target of renal functions. Front Cell Dev Biol 2020; 8: 519.
    OpenUrlPubMed
  25. 25.
    1. Daza-Arnedo R,
    2. Rico-Fontalvo J,
    3. Aroca-Martínez G,
    4. Rodríguez-Yanez T,
    5. Martínez-Ávila MC,
    6. Almanza-Hurtado A, et al.
    Insulin and the kidneys: a contemporary view on the molecular basis. Front Nephrol 2023; 3: 1133352.
    OpenUrlPubMed
  26. 26.↵
    1. Wang B,
    2. Wu L,
    3. Chen J,
    4. Dong L,
    5. Chen C,
    6. Wen Z, et al.
    Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6: 94.
    OpenUrlPubMed
  27. 27.↵
    1. Herman R,
    2. Kravos NA,
    3. Jensterle M,
    4. Janež A,
    5. Dolžan V
    . Metformin and insulin resistance: a review of the underlying mechanisms behind changes in GLUT4-mediated glucose transport. Int J Mol Sci 2022; 23: 1264.
    OpenUrlPubMed
  28. 28.↵
    1. Gerdes C,
    2. Müller N,
    3. Wolf G,
    4. Busch M
    . Nephroprotective properties of antidiabetic drugs. J Clin Med 2023; 12: 3377.
    OpenUrlPubMed
  29. 29.↵
    1. Skillman TG,
    2. Feldman JM
    . The pharmacology of sulfonylureas. Am J Med 1981; 70: 361-372.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Kilo C,
    2. Dudley J,
    3. Kalb B
    . Evaluation of the efficacy and safety of Diamicron in non-insulin-dependent diabetic patients. Diabetes Res Clin Pract 1991; 14: S79-S82.
    OpenUrlPubMed
  31. 31.↵
    1. Hussain A,
    2. Latiwesh OB,
    3. Ali F,
    4. Younis MYG,
    5. Alammari JA
    . Effects of body mass index, glycemic control, and hypoglycemic drugs on serum uric acid levels in type 2 diabetic patients. Cureus 2018; 10: e3158.
    OpenUrlPubMed
  32. 32.↵
    1. Suijk DLS,
    2. van Baar MJB,
    3. van Bommel EJM,
    4. Iqbal Z,
    5. Krebber MM,
    6. Vallon V, et al.
    SGLT2 inhibition and uric acid excretion in patients with type 2 diabetes and normal kidney function. Clin J Am Soc Nephrol 2022; 17: 663-671.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Kitazawa T,
    2. Seino H,
    3. Ohashi H,
    4. Inazawa T,
    5. Inoue M,
    6. Ai M, et al.
    Comparison of tofogliflozin versus glimepiride as the third oral agent added to metformin plus a dipeptidyl peptidase-4 inhibitor in Japanese patients with type 2 diabetes: a randomized, 24-week, open-label, controlled trial (STOP-OB). Diabetes Obes Metab 2020; 22: 1659-1663.
    OpenUrlPubMed
  34. 34.↵
    1. Matsushima Y,
    2. Takeshita Y,
    3. Kita Y,
    4. Otoda T,
    5. Kato K,
    6. Toyama-Wakakuri H, et al.
    Pleiotropic effects of sitagliptin versus voglibose in patients with type 2 diabetes inadequately controlled via diet or a single oral antihyperglycemic agent: a multicenter, randomized trial. BMJ Open Diabetes Res Care 2016; 4: e000190.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Kutoh E,
    2. Wada A,
    3. Hayashi J
    . Regulation of free fatty acid by sitagliptin monotherapy in drug-naïve subjects with type 2 diabetes. Endocr Pract 2018; 24: 1063-1072.
    OpenUrlPubMed
  36. 36.↵
    1. Tojikubo M,
    2. Tajiri Y
    . Different effects of linagliptin and sitagliptin on blood pressure and renal function in Japanese patients with type 2 diabetes mellitus. Diabetol Int 2017; 8: 397-401.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Fuchigami A,
    2. Shigiyama F,
    3. Kitazawa T,
    4. Okada Y,
    5. Ichijo T,
    6. Higa M, et al.
    Efficacy of dapagliflozin versus sitagliptin on cardiometabolic risk factors in Japanese patients with type 2 diabetes: a prospective, randomized study (DIVERSITY-CVR). Cardiovasc Diabetol 2020; 19: 1.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Yamagishi S,
    2. Ishibashi Y,
    3. Ojima A,
    4. Sugiura T,
    5. Matsui T
    . Linagliptin, a xanthine-based dipeptidyl peptidase-4 inhibitor, decreases serum uric acid levels in type 2 diabetic patients partly by suppressing xanthine oxidase activity. Int J Cardiol 2014; 176: 550-552.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Shimodaira M,
    2. Niwa T,
    3. Nakajima K,
    4. Kobayashi M
    . Beneficial effects of vildagliptin on metabolic parameters in patients with type 2 diabetes. Endocr Metab Immune Disord Drug Targets 2015; 15: 223-228.
    OpenUrlPubMed
  40. 40.↵
    1. Moriwaki Y,
    2. Inokuchi T,
    3. Ka T,
    4. Yamamoto A,
    5. Tsutsumi Z,
    6. Takahashi S, et al.
    Effect of acarbose on the increased plasma concentration of uric acid induced by sucrose ingestion. Nucleosides Nucleotides Nucleic Acids 2008; 27: 631-633.
    OpenUrlPubMed
  41. 41.↵
    1. Giglio RV,
    2. Papanas N,
    3. Rizvi AA,
    4. Ciaccio M,
    5. Patti AM,
    6. Ilias I, et al.
    An update on the current and emerging use of thiazolidinediones for type 2 diabetes. Medicina (Kaunas) 2022; 58: 1475.
    OpenUrlPubMed
  42. 42.↵
    1. Iwatani M,
    2. Wasada T,
    3. Katsumori K,
    4. Watanabe-Takahashi C,
    5. Kamatani N,
    6. Iwamoto Y
    . Troglitazone decreases serum uric acid concentrations in type II diabetic patients and non-diabetics. Diabetologia 2000; 43: 814-815.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Seber S,
    2. Ucak S,
    3. Basat O,
    4. Altuntas Y
    . The effect of dual PPAR alpha/gamma stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in type 2 diabetic patients. Diabetes Res Clin Pract 2006; 71: 52-58.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Macić-Dzanković A,
    2. Dzanković F,
    3. Pojskić B,
    4. Velija-Asimi Z
    . Evaluation of risk markers fluctuation during an initial therapy with rosiglitazon in patients suffering from metabolic syndrome. Bosn J Basic Med Sci 2009; 9: 320-328.
    OpenUrlPubMed
  45. 45.↵
    1. Kutoh E,
    2. Hori T
    . Effect of pioglitazone on serum uric acid levels in newly diagnosed, drug-naïve patients with type 2 diabetes. Endocr Res 2013; 38: 151-159.
    OpenUrlPubMed
  46. 46.↵
    1. Maalouf NM,
    2. Poindexter JR,
    3. Adams-Huet B,
    4. Moe OW,
    5. Sakhaee K
    . Increased production and reduced urinary buffering of acid in uric acid stone formers is ameliorated by pioglitazone. Kidney Int 2019; 95: 1262-1268.
    OpenUrlPubMed
  47. 47.↵
    1. MacFarlane LA,
    2. Liu CC,
    3. Solomon DH
    . The effect of initiating pharmacologic insulin on serum uric acid levels in patients with diabetes: a matched cohort analysis. Semin Arthritis Rheum 2015; 44: 592-596.
    OpenUrlPubMed
  48. 48.↵
    1. Rosati E,
    2. Di Giuseppe G,
    3. Mezza T,
    4. Ferraro PM
    . The influence of insulin and incretin-based therapies on renal tubular transport. J Nephrol 2024; 37: 2139-2150.
    OpenUrlPubMed
  49. 49.↵
    1. Asma Sakalli A,
    2. Küçükerdem HS,
    3. Aygün O
    . What is the relationship between serum uric acid level and insulin resistance? A case-control study. Medicine (Baltimore) 2023; 102: e36732.
    OpenUrlPubMed
  50. 50.↵
    1. Lee SJ,
    2. Oh BK,
    3. Sung KC
    . Uric acid and cardiometabolic diseases. Clin Hypertens 2020; 26: 13.
    OpenUrlPubMed
  51. 51.↵
    1. Dutour A,
    2. Abdesselam I,
    3. Ancel P,
    4. Kober F,
    5. Mrad G,
    6. Darmon P, et al.
    Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab 2016; 18: 882-891.
    OpenUrlPubMed
  52. 52.↵
    1. Muskiet MHA,
    2. Bunck MC,
    3. Heine RJ,
    4. Cornér A,
    5. Yki-Järvinen H,
    6. Eliasson B, et al.
    Exenatide twice-daily does not affect renal function or albuminuria compared to titrated insulin glargine in patients with type 2 diabetes mellitus: a post-hoc analysis of a 52-week randomised trial. Diabetes Res Clin Pract 2019; 153: 14-22.
    OpenUrlPubMed
  53. 53.↵
    1. Tonneijck L,
    2. Muskiet MHA,
    3. Smits MM,
    4. Bjornstad P,
    5. Kramer MHH,
    6. Diamant M, et al.
    Effect of immediate and prolonged GLP-1 receptor agonist administration on uric acid and kidney clearance: post-hoc analyses of 4 clinical trials. Diabetes Obes Metab 2018; 20: 1235-1245.
    OpenUrlPubMed
  54. 54.↵
    1. Nakaguchi H,
    2. Kondo Y,
    3. Kyohara M,
    4. Konishi H,
    5. Oiwa K,
    6. Terauchi Y
    . Effects of liraglutide and empagliflozin added to insulin therapy in patients with type 2 diabetes: a randomized controlled study. J Diabetes Investig 2020; 11: 1542-1550.
    OpenUrlPubMed
  55. 55.↵
    1. Tičinović Kurir T,
    2. Miličević T,
    3. Novak A,
    4. Vilović M,
    5. Božić J
    . Adropin - potential link in cardiovascular protection for obese male type 2 diabetes mellitus patients treated with liraglutide. Acta Clin Croat 2020; 59: 344-350.
    OpenUrlPubMed
  56. 56.↵
    1. Liakos A,
    2. Lambadiari V,
    3. Bargiota A,
    4. Kitsios K,
    5. Avramidis I,
    6. Kotsa K, et al.
    Effect of liraglutide on ambulatory blood pressure in patients with hypertension and type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2019; 21: 517-524.
    OpenUrlPubMed
  57. 57.↵
    1. Kuchay MS,
    2. Krishan S,
    3. Mishra SK,
    4. Choudhary NS,
    5. Singh MK,
    6. Wasir JS, et al.
    Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial). Diabetologia 2020; 63: 2434-2445.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Hirai K,
    2. Imamura S,
    3. Ookawara S,
    4. Hirai A,
    5. Morishita Y
    . Effects of once-weekly dulaglutide on glycemic control and renal function in patients with advanced-stage diabetic nephropathy. Nephro-Urol Mon 2017; 9: e55058.
    OpenUrl
  59. 59.↵
    1. Iwasaki T,
    2. Kessoku T,
    3. Higurashi T,
    4. Taguri M,
    5. Yoneda M
    . Low body mass index and old age are useful in predicting the hemoglobin A1c-lowering effect of switching from sitagliptin to dulaglutide in Japanese patients with type 2 diabetes mellitus: a single-center, open-label, single-arm, pilot study. Diabetol Int 2018; 9: 189-195.
    OpenUrlPubMed
  60. 60.↵
    1. Lotfy M,
    2. Singh J,
    3. Rashed H,
    4. Tariq S,
    5. Zilahi E,
    6. Adeghate E
    . The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms. Cell Tissue Res 2014; 358: 343-358.
    OpenUrlPubMed
  61. 61.↵
    1. You Y,
    2. Zhao Y,
    3. Chen M,
    4. Pan Y,
    5. Luo Z
    . Effects of empagliflozin on serum uric acid level of patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2023; 15: 202.
    OpenUrlPubMed
  62. 62.↵
    1. Hao Z,
    2. Huang X,
    3. Shao H,
    4. Tian F
    . Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: a randomized controlled trial. Ther Clin Risk Manag 2018; 14: 2407-2413.
    OpenUrlPubMed
  63. 63.↵
    1. Davies MJ,
    2. Trujillo A,
    3. Vijapurkar U,
    4. Damaraju CV,
    5. Meininger G
    . Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2015; 17: 426-429.
    OpenUrlCrossRefPubMed
  64. 64.↵
    1. Seino Y,
    2. Sasaki T,
    3. Fukatsu A,
    4. Sakai S,
    5. Samukawa Y
    . Efficacy and safety of luseogliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: a 12-week, randomized, placebo-controlled, phase II study. Curr Med Res Opin 2014; 30: 1219-1230.
    OpenUrlPubMed
  65. 65.↵
    1. Chino Y,
    2. Kuwabara M,
    3. Hisatome I
    . Factors influencing change in serum uric acid after administration of the sodium-glucose cotransporter 2 inhibitor luseogliflozin in patients with type 2 diabetes mellitus. J Clin Pharmacol 2022; 62: 366-375.
    OpenUrlPubMed
  66. 66.↵
    1. Terauchi Y,
    2. Tamura M,
    3. Senda M,
    4. Gunji R,
    5. Kaku K
    . Efficacy and safety of tofogliflozin in Japanese patients with type 2 diabetes mellitus with inadequate glycaemic control on insulin therapy (J-STEP/INS): results of a 16-week randomized, double-blind, placebo-controlled multicentre trial. Diabetes Obes Metab 2017; 19: 1397-1407.
    OpenUrlPubMed
  67. 67.↵
    1. Tanaka M,
    2. Yamakage H,
    3. Inoue T,
    4. Odori S,
    5. Kusakabe T,
    6. Shimatsu A, et al.
    Beneficial effects of ipragliflozin on the renal function and serum uric acid levels in Japanese patients with type 2 diabetes: a randomized, 12-week, open-label, active-controlled trial. Intern Med 2020; 59: 601-609.
    OpenUrlPubMed
  68. 68.
    1. Tsukagoshi-Yamaguchi A,
    2. Koshizaka M,
    3. Ishibashi R,
    4. Ishikawa K,
    5. Ishikawa T,
    6. Shoji M, et al.
    Metabolomic analysis of serum samples from a clinical study on ipragliflozin and metformin treatment in Japanese patients with type 2 diabetes: Exploring human metabolites associated with visceral fat reduction. Pharmacotherapy 2023; 43: 1317-1326.
    OpenUrlPubMed
  69. 69.↵
    1. Nagao M,
    2. Sasaki J,
    3. Tanimura-Inagaki K,
    4. Sakuma I,
    5. Sugihara H,
    6. Oikawa S
    . Ipragliflozin and sitagliptin differentially affect lipid and apolipoprotein profiles in type 2 diabetes: the SUCRE study. Cardiovasc Diabetol 2024; 23: 56.
    OpenUrlPubMed
  70. 70.↵
    1. Zhao Y,
    2. Xu L,
    3. Tian D,
    4. Xia P,
    5. Zheng H,
    6. Wang L, et al.
    Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab 2018; 20: 458-462.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Hu X,
    2. Yang Y,
    3. Hu X,
    4. Jia X,
    5. Liu H,
    6. Wei M, et al.
    Effects of sodium-glucose cotransporter 2 inhibitors on serum uric acid in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Diabetes Obes Metab 2022; 24: 228-238.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Akbari A,
    2. Rafiee M,
    3. Sathyapalan T,
    4. Sahebkar A
    . Impacts of sodium/glucose cotransporter-2 inhibitors on circulating uric acid concentrations: a systematic review and meta-analysis. J Diabetes Res 2022; 2022: 7520632.
    OpenUrlPubMed
  73. 73.↵
    1. Yip ASY,
    2. Leong S,
    3. Teo YH,
    4. Teo YN,
    5. Syn NLX,
    6. See RM, et al.
    Effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: a systematic review and meta-regression of 43 randomized controlled trials. Ther Adv Chronic Dis 2022; 13: 20406223221083509.
    OpenUrlCrossRefPubMed
  74. 74.↵
    1. Li J,
    2. Neal B,
    3. Perkovic V,
    4. de Zeeuw D,
    5. Neuen BL,
    6. Arnott C, et al.
    Mediators of the effects of canagliflozin on kidney protection in patients with type 2 diabetes. Kidney Int 2020; 98: 769-777.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Segar MW,
    2. Kolkailah AA,
    3. Frederich R,
    4. Pong A,
    5. Cannon CP,
    6. Cosentino F, et al.
    Mediators of ertugliflozin effects on heart failure and kidney outcomes among patients with type 2 diabetes mellitus. Diabetes Obes Metab 2022; 24: 1829-1839.
    OpenUrlPubMed
  76. 76.↵
    1. Doehner W,
    2. Anker SD,
    3. Butler J,
    4. Zannad F,
    5. Filippatos G,
    6. Ferreira JP, et al.
    Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur Heart J 2022; 43: 3435-3446.
    OpenUrlPubMed
  77. 77.
    1. Butt JH,
    2. Docherty KF,
    3. Claggett BL,
    4. Desai AS,
    5. Petersson M,
    6. Langkilde AM, et al.
    Association of dapagliflozin use with clinical outcomes and the introduction of uric acid-lowering therapy and colchicine in patients with heart failure with and without gout: a patient-level pooled meta-analysis of DAPA-HF and DELIVER. JAMA Cardiol 2023; 8: 386-393.
    OpenUrlPubMed
  78. 78.↵
    1. Banerjee M,
    2. Pal R,
    3. Maisnam I,
    4. Chowdhury S,
    5. Mukhopadhyay S
    . Serum uric acid lowering and effects of sodium-glucose cotransporter-2 inhibitors on gout: a meta-analysis and meta-regression of randomized controlled trials. Diabetes Obes Metab 2023; 25: 2697-2703.
    OpenUrlPubMed
  79. 79.↵
    1. Packer M
    . Hyperuricemia and gout reduction by SGLT2 inhibitors in diabetes and heart failure: JACC review topic of the week. J Am Coll Cardiol 2024; 83: 371-381.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. Packer M
    . Uric acid is a biomarker of oxidative stress in the failing heart: lessons learned from trials with allopurinol and SGLT2 inhibitors. J Card Fail 2020; 26: 977-984.
    OpenUrlPubMed
  81. 81.↵
    1. Chino Y,
    2. Samukawa Y,
    3. Sakai S,
    4. Nakai Y,
    5. Yamaguchi J,
    6. Nakanishi T, et al.
    SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 2014; 35: 391-404.
    OpenUrlCrossRefPubMedWeb of Science
  82. 82.↵
    1. Lu YH,
    2. Chang YP,
    3. Li T,
    4. Han F,
    5. Li CJ,
    6. Li XY, et al.
    Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice. Int J Biol Sci 2020; 16: 529-542.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 46 (3)
Saudi Medical Journal
Vol. 46, Issue 3
1 Mar 2025
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
Gang Wang, Guixia Wang
Saudi Medical Journal Mar 2025, 46 (3) 213-225; DOI: 10.15537/smj.2025.46.3.20240920

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
Gang Wang, Guixia Wang
Saudi Medical Journal Mar 2025, 46 (3) 213-225; DOI: 10.15537/smj.2025.46.3.20240920
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • ABSTRACT
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • serum uric acid
  • hyperuricemia
  • type 2 diabetes mellitus
  • antidiabetic drugs
  • cardiovascular disease

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire