Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Dental pulp stem cells

Biology and use for periodontal tissue engineering

Nahid Y. Ashri, Sumaiah A. Ajlan and Abdullah M. Aldahmash
Saudi Medical Journal December 2015, 36 (12) 1391-1399; DOI: https://doi.org/10.15537/smj.2015.12.12750
Nahid Y. Ashri
From the Department of Periodontics and Community Dentistry (Ashri, Ajlan), College of Dentistry, the Stem Cell Unit, Department of Anatomy (Aldahmash), King Saud University, Riyadh, Kingdom of Saudi Arabia, and the Department of Endocrinology (Aldahmash), Odense University Hospital and University of Southern Denmark, Odense, Denmark
BDS, MSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sumaiah A. Ajlan
From the Department of Periodontics and Community Dentistry (Ashri, Ajlan), College of Dentistry, the Stem Cell Unit, Department of Anatomy (Aldahmash), King Saud University, Riyadh, Kingdom of Saudi Arabia, and the Department of Endocrinology (Aldahmash), Odense University Hospital and University of Southern Denmark, Odense, Denmark
BDS, MSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Abdullah M. Aldahmash
From the Department of Periodontics and Community Dentistry (Ashri, Ajlan), College of Dentistry, the Stem Cell Unit, Department of Anatomy (Aldahmash), King Saud University, Riyadh, Kingdom of Saudi Arabia, and the Department of Endocrinology (Aldahmash), Odense University Hospital and University of Southern Denmark, Odense, Denmark
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Zander HA,
    2. Polson AM,
    3. Heijl LC
    (1976) Goals of periodontal therapy. J Periodontol 47:261–266.
    OpenUrlPubMed
  2. ↵
    (1995) The potential role of growth and differentiation factors in periodontal regeneration. J Periodontol 66:506–510.
    OpenUrlPubMed
  3. ↵
    1. Garrett S
    (1996) Periodontal regeneration around natural teeth. Ann Periodontol 1:621–666.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Bowers GM,
    2. Chadroff B,
    3. Carnevale R,
    4. Mellonig J,
    5. Corio R,
    6. Emerson J,
    7. et al.
    (1989) Histologic evaluation of new attachment apparatus formation in humans. Part III. J Periodontol 60:683–693.
    OpenUrlCrossRefPubMedWeb of Science
    1. Bowers GM,
    2. Chadroff B,
    3. Carnevale R,
    4. Mellonig J,
    5. Corio R,
    6. Emerson J,
    7. et al.
    (1989) Histologic evaluation of new attachment apparatus formation in humans. Part II. J Periodontol 60:675–682.
    OpenUrlPubMedWeb of Science
  5. ↵
    1. Bowers GM,
    2. Chadroff B,
    3. Carnevale R,
    4. Mellonig J,
    5. Corio R,
    6. Emerson J,
    7. et al.
    (1989) Histologic evaluation of new attachment apparatus formation in humans. Part I. J Periodontol 60:664–674.
    OpenUrlPubMedWeb of Science
  6. ↵
    1. Vishnubalaji R,
    2. Al-Nbaheen M,
    3. Kadalmani B,
    4. Aldahmash A,
    5. Ramesh T
    (2012) Skin-derived multipotent stromal cells--an archrival for mesenchymal stem cells. Cell Tissue Res 350:1–12.
    OpenUrlPubMed
  7. ↵
    1. Bianco P,
    2. Robey PG
    (2001) Stem cells in tissue engineering. Nature 414:118–121.
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. Friedenstein AJ,
    2. Chailakhyan RK,
    3. Gerasimov UV
    (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272.
    OpenUrlPubMedWeb of Science
  9. ↵
    1. Gronthos S,
    2. Brahim J,
    3. Li W,
    4. Fisher LW,
    5. Cherman N,
    6. Boyde A,
    7. et al.
    (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535.
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Gronthos S,
    2. Mankani M,
    3. Brahim J,
    4. Robey PG,
    5. Shi S
    (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630.
    OpenUrlAbstract/FREE Full Text
    1. Kraft DC,
    2. Bindslev DA,
    3. Melsen B,
    4. Abdallah BM,
    5. Kassem M,
    6. Klein-Nulend J
    (2010) Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci 118:29–38.
    OpenUrlCrossRefPubMed
  11. ↵
    1. Alkhalil M,
    2. Smajilagic A,
    3. Redzic A
    (2015) Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation. Med Glas (Zenica) 12:27–32.
    OpenUrl
  12. ↵
    1. Telles PD,
    2. Machado MA,
    3. Sakai VT,
    4. Nor JE
    (2011) Pulp tissue from primary teeth: new source of stem cells. J Appl Oral Sci 19:189–194.
    OpenUrlPubMed
    1. Kashyap R
    (2015) SHED - Basic Structure for Stem Cell Research. J Clin Diagn Res 9:ZE07–ZE09.
    OpenUrl
  13. ↵
    1. Miura M,
    2. Gronthos S,
    3. Zhao M,
    4. Lu B,
    5. Fisher LW,
    6. Robey PG,
    7. et al.
    (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Seo BM,
    2. Miura M,
    3. Gronthos S,
    4. Bartold PM,
    5. Batouli S,
    6. Brahim J,
    7. et al.
    (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155.
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    1. Zhu W,
    2. Liang M
    (2015) Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells International 2015:972313.
    OpenUrl
  16. ↵
    1. Prateeptongkum E,
    2. Klingelhoffer C,
    3. Morsczeck C
    (2015) The influence of the donor on dental apical papilla stem cell properties. Tissue Cell 47:382–388.
    OpenUrl
    1. Ikeda E,
    2. Hirose M,
    3. Kotobuki N,
    4. Shimaoka H,
    5. Tadokoro M,
    6. Maeda M,
    7. et al.
    (2006) Osteogenic differentiation of human dental papilla mesenchymal cells. Biochem Biophys Res Commun 342:1257–1262.
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Sonoyama W,
    2. Liu Y,
    3. Yamaza T,
    4. Tuan RS,
    5. Wang S,
    6. Shi S,
    7. et al.
    (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171.
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Kemoun P,
    2. Laurencin-Dalicieux S,
    3. Rue J,
    4. Farges JC,
    5. Gennero I,
    6. Conte-Auriol F,
    7. et al.
    (2007) Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329:283–294.
    OpenUrlCrossRefPubMed
  19. ↵
    1. Morsczeck C,
    2. Gotz W,
    3. Schierholz J,
    4. Zeilhofer F,
    5. Kuhn U,
    6. Mohl C,
    7. et al.
    (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165.
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Alongi DJ,
    2. Yamaza T,
    3. Song Y,
    4. Fouad AF,
    5. Romberg EE,
    6. Shi S,
    7. et al.
    (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5:617–631.
    OpenUrlCrossRefPubMed
  21. ↵
    1. Kim J,
    2. Park JC,
    3. Kim SH,
    4. Im GI,
    5. Kim BS,
    6. Lee JB,
    7. et al.
    (2014) Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis 20:191–204.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Park JC,
    2. Kim JM,
    3. Jung IH,
    4. Kim JC,
    5. Choi SH,
    6. Cho KS,
    7. et al.
    (2011) Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 38:721–731.
    OpenUrlCrossRefPubMed
  23. ↵
    1. Shi S,
    2. Robey PG,
    3. Gronthos S
    (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29:532–539.
    OpenUrlCrossRefPubMedWeb of Science
  24. ↵
    1. Zhang W,
    2. Walboomers XF,
    3. Shi S,
    4. Fan M,
    5. Jansen JA
    (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823.
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Yang X,
    2. Zhang W,
    3. van den Dolder J,
    4. Walboomers XF,
    5. Bian Z,
    6. Fan M,
    7. et al.
    (2007) Multilineage potential of STRO-1+rat dental pulp cells in vitro. J Tissue Eng Regen Med 1:128–135.
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. d’Aquino R,
    2. Graziano A,
    3. Sampaolesi M,
    4. Laino G,
    5. Pirozzi G,
    6. De Rosa A,
    7. et al.
    (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171.
    OpenUrlCrossRefPubMedWeb of Science
  27. ↵
    1. Karaoz E,
    2. Demircan PC,
    3. Saglam O,
    4. Aksoy A,
    5. Kaymaz F,
    6. Duruksu G
    (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136:455–473.
    OpenUrlCrossRefPubMed
  28. ↵
    1. Li X,
    2. Hou J,
    3. Wu B,
    4. Chen T,
    5. Luo A
    (2014) Effects of platelet-rich plasma and cell coculture on angiogenesis in human dental pulp stem cells and endothelial progenitor cells. J Endod 40:1810–1814.
    OpenUrl
  29. ↵
    1. Cho YA,
    2. Noh K,
    3. Jue SS,
    4. Lee SY,
    5. Kim EC
    (2015) Melatonin promotes hepatic differentiation of human dental pulp stem cells: clinical implications for the prevention of liver fibrosis. J Pineal Res 58:127–135.
    OpenUrlCrossRefPubMed
  30. ↵
    1. Paino F,
    2. Ricci G,
    3. De Rosa A,
    4. D’Aquino R,
    5. Laino L,
    6. Pirozzi G,
    7. et al.
    (2010) Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater 20:295–305.
    OpenUrlCrossRefPubMed
  31. ↵
    1. Tran HL,
    2. Doan VN
    (Feb, 2015) Human dental pulp stem cells cultured onto dentin derived scaffold can regenerate dentin-like tissue in vivo. Cell Tissue Bank, doi.10.1007/s10561-015-9503-z.
  32. ↵
    1. Graziano A,
    2. d’Aquino R,
    3. Laino G,
    4. Proto A,
    5. Giuliano MT,
    6. Pirozzi G,
    7. et al.
    (2008) Human CD34+stem cells produce bone nodules in vivo. Cell Prolif 41:1–11.
    OpenUrlCrossRefPubMed
  33. ↵
    1. Laino G,
    2. Carinci F,
    3. Graziano A,
    4. d’Aquino R,
    5. Lanza V,
    6. De Rosa A,
    7. et al.
    (2006) In vitro bone production using stem cells derived from human dental pulp. J Craniofac Surg 17:511–515.
    OpenUrlCrossRefPubMed
  34. ↵
    1. Horibe H,
    2. Murakami M,
    3. Iohara K,
    4. Hayashi Y,
    5. Takeuchi N,
    6. Takei Y,
    7. et al.
    (2014) Isolation of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs) with high proliferation, migration, and regeneration potential is independent of age. PLoS One 9:e98553.
    OpenUrl
  35. ↵
    1. Kawanabe N,
    2. Fukushima H,
    3. Ishihara Y,
    4. Yanagita T,
    5. Kurosaka H,
    6. Yamashiro T
    (2015) Isolation and characterization of SSEA-4-positive subpopulation of human deciduous dental pulp cells. Clin Oral Investig 19:363–371.
    OpenUrlCrossRefPubMed
  36. ↵
    1. Kuo MY,
    2. Lan WH,
    3. Lin SK,
    4. Tsai KS,
    5. Hahn LJ
    (1992) Collagen gene expression in human dental pulp cell cultures. Arch Oral Biol 37:945–952.
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Dominici M,
    2. Le Blanc K,
    3. Mueller I,
    4. Slaper-Cortenbach I,
    5. Marini F,
    6. Krause D,
    7. et al.
    (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317.
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. El-Backly RM,
    2. Massoud AG,
    3. El-Badry AM,
    4. Sherif RA,
    5. Marei MK
    (2008) Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust Endod J 34:52–67.
    OpenUrlPubMed
  39. ↵
    1. Liu Y,
    2. Lim J,
    3. Teoh SH
    (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705.
    OpenUrlCrossRefPubMed
  40. ↵
    1. Chaudhary C,
    2. Garg T
    (2015) Scaffolds: A novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst 32:277–321.
    OpenUrl
  41. ↵
    1. Mangano C,
    2. Paino F,
    3. d’Aquino R,
    4. De Rosa A,
    5. Iezzi G,
    6. Piattelli A,
    7. et al.
    (2011) Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. PLoS One 6:e18721.
    OpenUrlCrossRefPubMed
  42. ↵
    1. La Noce M,
    2. Paino F,
    3. Spina A,
    4. Naddeo P,
    5. Montella R,
    6. Desiderio V,
    7. et al.
    (2014) Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 42:761–768.
    OpenUrlCrossRefPubMed
  43. ↵
    1. Reynolds MA,
    2. Aichelmann-Reidy ME,
    3. Branch-Mays GL
    (2010) Regeneration of periodontal tissue: bone replacement grafts. Dent Clin North Am 54:55–71.
    OpenUrlCrossRefPubMed
    1. Hanes PJ
    (2007) Bone replacement grafts for the treatment of periodontal intrabony defects. Oral Maxillofac Surg Clin North Am 19:499–512.
    OpenUrl
  44. ↵
    1. Minsk L
    (2005) Bone replacement grafts for periodontal regeneration. Compend Contin Educ Dent 26:676, 678, 680 passim.
    OpenUrl
  45. ↵
    1. Del Corso M,
    2. Vervelle A,
    3. Simonpieri A,
    4. Jimbo R,
    5. Inchingolo F,
    6. Sammartino G,
    7. et al.
    (2012) Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: Periodontal and dentoalveolar surgery. Curr Pharm Biotechnol 13:1207–1230.
    OpenUrlPubMed
    1. Simonpieri A,
    2. Del Corso M,
    3. Vervelle A,
    4. Jimbo R,
    5. Inchingolo F,
    6. Sammartino G,
    7. et al.
    (2012) Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: Bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol 13:1231–1256.
    OpenUrlCrossRefPubMed
  46. ↵
    1. Dohan Ehrenfest DM,
    2. Bielecki T,
    3. Mishra A,
    4. Borzini P,
    5. Inchingolo F,
    6. Sammartino G,
    7. et al.
    (2012) In search of a consensus terminology in the field of platelet concentrates for surgical use: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), fibrin gel polymerization and leukocytes. Curr Pharm Biotechnol 13:1131–1137.
    OpenUrlCrossRefPubMed
  47. ↵
    1. Naik RM,
    2. Pudakalkatti PS,
    3. Hattarki SA
    (2014) Can MTA be: Miracle trioxide aggregate? J Indian Soc Periodontol 18:5–8.
    OpenUrl
  48. ↵
    1. Katsamakis S,
    2. Slot DE,
    3. Van der Sluis LW,
    4. Van der Weijden F
    (2013) Histological responses of the periodontium to MTA: a systematic review. J Clin Periodontol 40:334–344.
    OpenUrl
  49. ↵
    1. Camilleri J,
    2. Pitt Ford TR
    (2006) Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 39:747–754.
    OpenUrlCrossRefPubMed
  50. ↵
    1. Chen CL,
    2. Huang TH,
    3. Ding SJ,
    4. Shie MY,
    5. Kao CT
    (2009) Comparison of calcium and silicate cement and mineral trioxide aggregate biologic effects and bone markers expression in MG63 cells. J Endod 35:682–685.
    OpenUrlCrossRefPubMedWeb of Science
  51. ↵
    1. Tani-Ishii N,
    2. Hamada N,
    3. Watanabe K,
    4. Tujimoto Y,
    5. Teranaka T,
    6. Umemoto T
    (2007) Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide. J Endod 33:836–839.
    OpenUrlPubMed
  52. ↵
    1. Perinpanayagam H,
    2. Al-Rabeah E
    (2009) Osteoblasts interact with MTA surfaces and express Runx2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:590–596.
    OpenUrlPubMed
  53. ↵
    1. Zhang W,
    2. Li Z,
    3. Huang Q,
    4. Xu L,
    5. Li J,
    6. Jin Y,
    7. et al.
    (2013) Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells. Int J Nanomedicine 8:257–265.
    OpenUrl
  54. ↵
    1. Cordoba A,
    2. Monjo M,
    3. Hierro-Oliva M,
    4. Gonzalez-Martin ML,
    5. Ramis JM
    (2015) Bioinspired Quercitrin Nanocoatings: A fluorescence-based method for their surface quantification, and their effect on stem cell adhesion and differentiation to the osteoblastic lineage. ACS Appl Mater Interfaces 7:16857–16864.
    OpenUrl
  55. ↵
    1. Hammarstrom L,
    2. Heijl L,
    3. Gestrelius S
    (1997) Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol 24(9 Pt 2):669–677.
    OpenUrlCrossRefPubMedWeb of Science
  56. ↵
    1. Correa MG,
    2. Gomes Campos ML,
    3. Marques MR,
    4. Bovi Ambrosano GM,
    5. Casati MZ,
    6. Nociti FH Jr.,
    7. et al.
    (2014) Outcome of enamel matrix derivative treatment in the presence of chronic stress: histometric study in rats. J Periodontol 85:e259–e267.
    OpenUrl
  57. ↵
    1. Stout BM,
    2. Alent BJ,
    3. Pedalino P,
    4. Holbrook R,
    5. Gluhak-Heinrich J,
    6. Cui Y,
    7. et al.
    (2014) Enamel matrix derivative: protein components and osteoinductive properties. J Periodontol 85:e9–e17.
    OpenUrl
    1. Miron RJ,
    2. Chandad F,
    3. Buser D,
    4. Sculean A,
    5. Cochran DL,
    6. Zhang Y
    (2015) Effect of enamel matrix derivative (EMD)-liquid on osteoblast and periodontal ligament cell proliferation and differentiation. J Periodontol 3:1–14.
    OpenUrl
    1. Bosshardt DD
    (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35(8 Suppl):87–105.
    OpenUrlCrossRefPubMed
  58. ↵
    1. Kemoun P,
    2. Gronthos S,
    3. Snead ML,
    4. Rue J,
    5. Courtois B,
    6. Vaysse F,
    7. et al.
    (2011) The role of cell surface markers and enamel matrix derivatives on human periodontal ligament mesenchymal progenitor responses in vitro. Biomaterials 32:7375–7388.
    OpenUrlCrossRef
  59. ↵
    1. Smith PC,
    2. Martinez C,
    3. Caceres M,
    4. Martinez J
    (2015) Research on growth factors in periodontology. Periodontol 2000 67:234–250.
    OpenUrl
  60. ↵
    1. Darby IB,
    2. Morris KH
    (2013) A systematic review of the use of growth factors in human periodontal regeneration. J Periodontol 84:465–476.
    OpenUrlCrossRefPubMed
  61. ↵
    1. Shah P,
    2. Keppler L,
    3. Rutkowski J
    (2014) A review of platelet derived growth factor playing pivotal role in bone regeneration. J Oral Implantol 40:330–340.
    OpenUrl
  62. ↵
    1. Al-Hazmi BA,
    2. Al-Hamdan KS,
    3. Al-Rasheed A,
    4. Babay N,
    5. Wang HL,
    6. Al-Hezaimi K
    (2013) Efficacy of using PDGF and xenograft with or without collagen membrane for bone regeneration around immediate implants with induced dehiscence-type defects: a microcomputed tomographic study in dogs. J Periodontol 84:371–378.
    OpenUrl
  63. ↵
    1. Nevins M,
    2. Kao RT,
    3. McGuire MK,
    4. McClain PK,
    5. Hinrichs JE,
    6. McAllister BS,
    7. et al.
    (2013) Platelet-derived growth factor promotes periodontal regeneration in localized osseous defects: 36-month extension results from a randomized, controlled, double-masked clinical trial. J Periodontol 84:456–564.
    OpenUrlCrossRefPubMed
  64. ↵
    1. Canalis E,
    2. McCarthy TL,
    3. Centrella M
    (1989) Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 140:530–537.
    OpenUrlCrossRefPubMed
  65. ↵
    1. Mezawa M,
    2. Araki S,
    3. Takai H,
    4. Sasaki Y,
    5. Wang S,
    6. Li X,
    7. et al.
    (2009) Regulation of human bone sialoprotein gene transcription by platelet-derived growth factor-BB. Gene 435:80–87.
    OpenUrl
  66. ↵
    1. Diaz-Sanchez RM,
    2. Yanez-Vico RM,
    3. Fernandez-Olavarria A,
    4. Mosquera-Perez R,
    5. Iglesias-Linares A,
    6. Torres-Lagares D
    (2015) Current approaches of bone morphogenetic proteins in dentistry. J Oral Implantol 41:337–342.
    OpenUrl
  67. ↵
    1. Lohmann CH,
    2. Andreacchio D,
    3. Koster G,
    4. Carnes DL Jr.,
    5. Cochran DL,
    6. Dean DD,
    7. et al.
    (2001) Tissue response and osteoinduction of human bone grafts in vivo. Arch Orthop Trauma Surg 121:583–590.
    OpenUrl
  68. ↵
    1. Blum B,
    2. Moseley J,
    3. Miller L,
    4. Richelsoph K,
    5. Haggard W
    (2004) Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics 27(1 Suppl):s161–s165.
    OpenUrlPubMed
  69. ↵
    1. Pietrzak WS,
    2. Woodell-May J,
    3. McDonald N
    (2006) Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg 17:84–90.
    OpenUrlCrossRefPubMedWeb of Science
  70. ↵
    1. Wildemann B,
    2. Kadow-Romacker A,
    3. Haas NP,
    4. Schmidmaier G
    (2007) Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A 81:437–442.
    OpenUrlPubMed
  71. ↵
    1. Del Rosario C,
    2. Rodriguez-Evora M,
    3. Reyes R,
    4. Delgado A,
    5. Evora C
    (2015) BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous beta-TCP scaffold for critical-size bone defect repair in rats. Biomed Mater 10:045008.
    OpenUrlCrossRefPubMed
  72. ↵
    1. Boyan BD,
    2. Ranly DM,
    3. Schwartz Z
    (2006) Use of growth factors to modify osteoinductivity of demineralized bone allografts: lessons for tissue engineering of bone. Dent Clin North Am 50:217–212.
    OpenUrlCrossRefPubMed
  73. ↵
    1. Jones AA,
    2. Buser D,
    3. Schenk R,
    4. Wozney J,
    5. Cochran DL
    (2006) The effect of rhBMP-2 around endosseous implants with and without membranes in the canine model. J Periodontol 77:1184–1193.
    OpenUrlCrossRefPubMed
  74. ↵
    1. King GN,
    2. Hughes FJ
    (2001) Bone morphogenetic protein-2 stimulates cell recruitment and cementogenesis during early wound healing. J Clin Periodontol 28:465–475.
    OpenUrlCrossRefPubMedWeb of Science
  75. ↵
    1. Oda S,
    2. Kinoshita A,
    3. Higuchi T,
    4. Shizuya T,
    5. Ishikawa I
    (1997) Ectopic bone formation by biphasic calcium phosphate (BCP) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Med Dent Sci 44:53–62.
    OpenUrlPubMed
  76. ↵
    1. Schroeder TM,
    2. Westendorf JJ
    (2005) Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res 20:2254–2263.
    OpenUrlCrossRefPubMed
  77. ↵
    1. Paino F,
    2. La Noce M,
    3. Tirino V,
    4. Naddeo P,
    5. Desiderio V,
    6. Pirozzi G,
    7. et al.
    (2014) Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32:279–289.
    OpenUrlCrossRefPubMedWeb of Science
  78. ↵
    1. Bartold PM,
    2. Shi S,
    3. Gronthos S
    (2006) Stem cells and periodontal regeneration. Periodontol 2000 40:164–172.
    OpenUrlCrossRefPubMed
  79. ↵
    1. Lin NH,
    2. Gronthos S,
    3. Bartold PM
    (2008) Stem cells and periodontal regeneration. Aust Dent J 53:108–121.
    OpenUrlCrossRefPubMed
  80. ↵
    1. Hasegawa M,
    2. Yamato M,
    3. Kikuchi A,
    4. Okano T,
    5. Ishikawa I
    (2005) Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 11:469–478.
    OpenUrlCrossRefPubMedWeb of Science
  81. ↵
    1. Gao H,
    2. Li B,
    3. Zhao L,
    4. Jin Y
    (2015) Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. Int J Nanomedicine 10:4009–4027.
    OpenUrl
  82. ↵
    1. d’Aquino R,
    2. De Rosa A,
    3. Lanza V,
    4. Tirino V,
    5. Laino L,
    6. Graziano A,
    7. et al.
    (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83.
    OpenUrlCrossRefPubMed
  83. ↵
    1. Giuliani A,
    2. Manescu A,
    3. Langer M,
    4. Rustichelli F,
    5. Desiderio V,
    6. Paino F,
    7. et al.
    (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2:316–324.
    OpenUrlCrossRefPubMed
  84. ↵
    1. Brunelli G,
    2. Motroni A,
    3. Graziano A,
    4. D’Aquino R,
    5. Zollino I,
    6. Carinci F
    (2013) Sinus lift tissue engineering using autologous pulp micro-grafts: A case report of bone density evaluation. Journal of Indian Society of Periodontology 17:644–647.
    OpenUrl
  85. ↵
    1. Yamada Y,
    2. Ito K,
    3. Nakamura S,
    4. Ueda M,
    5. Nagasaka T
    (2011) Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 20:1003–1013.
    OpenUrlCrossRefPubMed
  86. ↵
    1. Yamada Y,
    2. Nakamura S,
    3. Ito K,
    4. Sugito T,
    5. Yoshimi R,
    6. Nagasaka T,
    7. et al.
    (2010) A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A 16:1891–1900.
    OpenUrlCrossRefPubMed
  87. ↵
    1. Ito K,
    2. Yamada Y,
    3. Nakamura S,
    4. Ueda M
    (2011) Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants 26:947–954.
    OpenUrlPubMed
  88. ↵
    1. Liu HC,
    2. E LL,
    3. Wang DS,
    4. Su F,
    5. Wu X,
    6. Shi ZP,
    7. et al.
    (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A 17:2417–24133.
    OpenUrlCrossRefPubMed
  89. ↵
    1. Ikeda E,
    2. Morita R,
    3. Nakao K,
    4. Ishida K,
    5. Nakamura T,
    6. Takano-Yamamoto T,
    7. et al.
    (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A 106:13475–13480.
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Xu WP,
    2. Zhang W,
    3. Asrican R,
    4. Kim HJ,
    5. Kaplan DL,
    6. Yelick PC
    (2008) Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng Part A 14:549–557.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 36 (12)
Saudi Medical Journal
Vol. 36, Issue 12
1 Dec 2015
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dental pulp stem cells
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Dental pulp stem cells
Nahid Y. Ashri, Sumaiah A. Ajlan, Abdullah M. Aldahmash
Saudi Medical Journal Dec 2015, 36 (12) 1391-1399; DOI: 10.15537/smj.2015.12.12750

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Dental pulp stem cells
Nahid Y. Ashri, Sumaiah A. Ajlan, Abdullah M. Aldahmash
Saudi Medical Journal Dec 2015, 36 (12) 1391-1399; DOI: 10.15537/smj.2015.12.12750
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire