Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview
Open Access

Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories

A review of current challenges

Ibrahim A. Al-Zahrani
Saudi Medical Journal September 2018, 39 (9) 861-872; DOI: https://doi.org/10.15537/smj.2018.9.22840
Ibrahim A. Al-Zahrani
From the Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, and Special infectious Agents Unit-Biosafety Level-3, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Pavelkovich A,
    2. Balode A,
    3. Edquist P,
    4. Egorova S,
    5. Ivanova M,
    6. Kaftyreva L,
    7. et al.
    (2014) Detection of carbapenemase-producing enterobacteriaceae in the baltic countries and st. Petersburg area. Biomed Res Int 2014:548960.
    OpenUrl
  2. ↵
    1. Paterson DL,
    2. Bonomo RA
    (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18:657–686.
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Pitout JDD,
    2. Laupland KB
    (2008) Extended-spectrum ?-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166.
    OpenUrlCrossRefPubMedWeb of Science
  4. ↵
    1. Shibl A,
    2. Al-Agamy M,
    3. Memish Z,
    4. Senok A,
    5. Khader SA,
    6. Assiri A
    (2013) The emergence of OXA-48- and NDM-1-positive Klebsiella pneumoniae in Riyadh, Saudi Arabia. Int J Infect Dis 17:e1130–e1133.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Buehrle DJ,
    2. Shields RK,
    3. Clarke LG,
    4. Potoski BA,
    5. Clancy CJ,
    6. Nguyen MH
    (2017) Carbapenem-Resistant Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Microbiologic Treatment Failure. Antimicrobial agents and chemotherapy, 61.
  6. ↵
    1. Djahmi N,
    2. Dunyach-Remy C,
    3. Pantel A,
    4. Dekhil M,
    5. Sotto A,
    6. Lavigne JP
    (2014) Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. Biomed Res Int 2014:305784.
    OpenUrl
  7. ↵
    1. Poirel L,
    2. Heritier C,
    3. Tolun V,
    4. Nordmann P
    (2004) Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:15–22.
    OpenUrlAbstract/FREE Full Text
    1. Nordmann P,
    2. Cuzon G,
    3. Naas T
    (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236.
    OpenUrlCrossRefPubMedWeb of Science
    1. Nordmann P,
    2. Naas T,
    3. Poirel L
    (2011) Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798.
    OpenUrlCrossRefPubMed
  8. ↵
    1. Potron A,
    2. Poirel L,
    3. Rondinaud E,
    4. Nordmann P
    (2013) Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill, 18.
    1. Zowawi HM,
    2. Balkhy HH,
    3. Walsh TR,
    4. Paterson DL
    (2013) beta-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin Microbiol Rev 26:361–380.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Al-Zahrani IA,
    2. Alsiri BA
    (2018) The emergence of carbapenem-resistant Klebsiella pneumoniae isolates producing OXA-48 and NDM in the Southern (Asir) province, Saudi Arabia. Saudi Med J 39:23–30.
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Lee CR,
    2. Lee JH,
    3. Park KS,
    4. Kim YB,
    5. Jeong BC,
    6. Lee SH
    (2016) Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 7:895.
    OpenUrlCrossRefPubMed
  11. ↵
    1. Higgins PG,
    2. Perez-Llarena FJ,
    3. Zander E,
    4. Fernandez A,
    5. Bou G,
    6. Seifert H
    (2013) OXA-235, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 57:2121–2126.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Yigit H,
    2. Queenan AM,
    3. Anderson GJ,
    4. Domenech-Sanchez A,
    5. Biddle JW,
    6. Steward CD,
    7. et al.
    (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Munoz-Price LS,
    2. Poirel L,
    3. Bonomo RA,
    4. Schwaber MJ,
    5. Daikos GL,
    6. Cormican M,
    7. et al.
    (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796.
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. Humphries RM,
    2. McKinnell JA
    (2015) Continuing Challenges for the Clinical Laboratory for Detection of Carbapenem-Resistant Enterobacteriaceae. J Clin Microbiol 53(12):3712–3714.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Nordmann P,
    2. Poirel L,
    3. Dortet L
    (2012) Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 18:1503–1507.
    OpenUrlCrossRefPubMed
  16. ↵
    1. Bakthavatchalam YD,
    2. Anandan S,
    3. Veeraraghavan B
    (2016) Laboratory Detection and Clinical Implication of Oxacillinase-48 like Carbapenemase: The Hidden Threat. J Glob Infect Dis 8:41–50.
    OpenUrlCrossRef
  17. ↵
    1. Kruse EB,
    2. Aurbach U,
    3. Wisplinghoff H
    (2013) Carbapenem-Resistant Enterobacteriaceae: Laboratory Detection and Infection Control Practices. Curr Infect Dis Rep, [Epub ahead of print].
  18. ↵
    1. Banerjee R,
    2. Humphries R
    (2017) Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence 8:427–439.
    OpenUrlCrossRef
  19. ↵
    1. EUCAST
    Breakpoint tables for interpretation of MICs and zone diameters. version 8.0, 2018, The European Committee on Antimicrobial Susceptibility Testing. Available from: http://www.eucast.org.
  20. ↵
    1. Vading M,
    2. Samuelsen Ø,
    3. Haldorsen B,
    4. Sundsfjord AS,
    5. Giske CG
    (2011) Comparison of disk diffusion, Etest and VITEK2 for detection of carbapenemase-producing Klebsiella pneumoniae with the EUCAST and CLSI breakpoint systems. Clin Microbiol Infect 17:668–674.
    OpenUrlCrossRefPubMed
  21. ↵
    1. Richter SS,
    2. Marchaim D
    (2017) Screening for carbapenem-resistant Enterobacteriaceae: Who, When, and How? Virulence 8:417–426.
    OpenUrl
  22. ↵
    1. CLSI
    (2018) Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibilty Testing, Supplement, M100S28 (Wayne, PA (USA)), 28th ed.
  23. ↵
    1. CLSI
    (2016) Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibilty Testing, M100S, 26th CLSI (Wayne, PA (USA)).
  24. ↵
    1. Viau R,
    2. Frank KM,
    3. Jacobs MR,
    4. Wilson B,
    5. Kaye K,
    6. Donskey CJ,
    7. et al.
    (2016) Intestinal Carriage of Carbapenemase-Producing Organisms: Current Status of Surveillance Methods. Clin Microbiol Rev 29:1–27.
    OpenUrlCrossRefPubMed
  25. ↵
    1. Tsakris A,
    2. Poulou A,
    3. Pournaras S,
    4. Voulgari E,
    5. Vrioni G,
    6. Themeli-Digalaki K,
    7. et al.
    (2010) A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother 65:1664–1671.
    OpenUrlCrossRefPubMedWeb of Science
    1. Miriagou V,
    2. Tzelepi E,
    3. Kotsakis SD,
    4. Daikos GL,
    5. Bou Casals J,
    6. Tzouvelekis LS
    (2013) Combined disc methods for the detection of KPC- and/or VIM-positive Klebsiella pneumoniae: improving reliability for the double carbapenemase producers. Clin Microbiol Infect 19:E412–E415.
    OpenUrlCrossRefPubMed
  26. ↵
    1. Lutgring JD,
    2. Limbago BM
    (2016) The Problem of Carbapenemase-Producing-Carbapenem-Resistant-Enterobacteriaceae Detection. J Clin Microbiol 54:529–534.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. van Dijk K,
    2. Voets GM,
    3. Scharringa J,
    4. Voskuil S,
    5. Fluit AC,
    6. Rottier WC,
    7. et al.
    (2014) A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clin Microbiol Infect 20:345–349.
    OpenUrlCrossRefPubMed
  28. ↵
    1. Doyle D,
    2. Peirano G,
    3. Lascols C,
    4. Lloyd T,
    5. Church DL,
    6. Pitout JD
    (2012) Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 50:3877–3880.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Tsakris A,
    2. Poulou A,
    3. Bogaerts P,
    4. Dimitroulia E,
    5. Pournaras S,
    6. Glupczynski Y
    (2015) Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol 53:1245–1251.
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Hrabak J,
    2. Chudackova E,
    3. Papagiannitsis CC
    (2014) Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 20:839–853.
    OpenUrlCrossRefPubMed
  31. ↵
    1. Simner PJ,
    2. Martin I,
    3. Opene B,
    4. Tamma PD,
    5. Carroll KC,
    6. Milstone AM
    (2016) Evaluation of Multiple Methods for Detection of Gastrointestinal Colonization of Carbapenem-Resistant Organisms from Rectal Swabs. J Clin Microbiol 54:1664–1667.
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Huang TD,
    2. Berhin C,
    3. Bogaerts P,
    4. Glupczynski Y
    (2014) Comparative evaluation of two chromogenic tests for rapid detection of carbapenemase in Enterobacteriaceae and in Pseudomonas aeruginosa isolates. J Clin Microbiol 52:3060–3063.
    OpenUrlAbstract/FREE Full Text
    1. Wilkinson KM,
    2. Winstanley TG,
    3. Lanyon C,
    4. Cummings SP,
    5. Raza MW,
    6. Perry JD
    (2012) Comparison of four chromogenic culture media for carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 50:3102–3104.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Zarakolu P,
    2. Day KM,
    3. Sidjabat HE,
    4. Kamolvit W,
    5. Lanyon CV,
    6. Cummings SP,
    7. et al.
    (2015) Evaluation of a new chromogenic medium, chromID OXA-48, for recovery of carbapenemase-producing Enterobacteriaceae from patients at a university hospital in Turkey. Eur J Clin Microbiol Infect Dis 34:519–525.
    OpenUrlCrossRefPubMed
  34. ↵
    1. Nordmann P,
    2. Girlich D,
    3. Poirel L
    (2012) Detection of carbapenemase producers in Enterobacteriaceae by use of a novel screening medium. J Clin Microbiol 50:2761–2766.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Girlich D,
    2. Poirel L,
    3. Nordmann P
    (2013) Comparison of the SUPERCARBA, CHROMagar KPC, and Brilliance CRE screening media for detection of Enterobacteriaceae with reduced susceptibility to carbapenems. Diagn Microbiol Infect Dis 75:214–217.
    OpenUrlCrossRefPubMed
  36. ↵
    1. Perry JD
    (2017) A Decade of Development of Chromogenic Culture Media for Clinical Microbiology in an Era of Molecular Diagnostics. Clin Microbiol Rev 30:449–479.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Garcia-Quintanilla M,
    2. Poirel L,
    3. Nordmann P
    (2018) CHROMagar mSuperCARBA and RAPIDEC®Carba NP test for detection of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 90:77–80.
    OpenUrlCrossRef
  38. ↵
    1. Gniadek TJ,
    2. Carroll KC,
    3. Simner PJ
    (2016) Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle. J Clin Microbiol 54:1700–1710.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Shinde S,
    2. Gupta R,
    3. Raut SS,
    4. Nataraj G,
    5. Mehta PR
    (2017) Carba NP as a simpler, rapid, cost-effective, and a more sensitive alternative to other phenotypic tests for detection of carbapenem resistance in routine diagnostic laboratories. J Lab Physicians 9:100–103.
    OpenUrl
  40. ↵
    1. Tijet N,
    2. Boyd D,
    3. Patel SN,
    4. Mulvey MR,
    5. Melano R
    (2013) Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:4578–4580.
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Papagiannitsis CC,
    2. Studentova V,
    3. Izdebski R,
    4. Oikonomou O,
    5. Pfeifer Y,
    6. Petinaki E,
    7. et al.
    (2015) Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol 53:1731–1735.
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Dortet L,
    2. Brechard L,
    3. Poirel L,
    4. Nordmann P
    (2014) Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. J Med Microbiol 63:772–776.
    OpenUrlCrossRefPubMed
  43. ↵
    1. van der Zwaluw K,
    2. de Haan A,
    3. Pluister GN,
    4. Bootsma HJ,
    5. de Neeling AJ,
    6. Schouls LM
    (2015) The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PloS one 10:e0123690.
    OpenUrlCrossRefPubMed
  44. ↵
    1. Tijet N,
    2. Patel SN,
    3. Melano RG
    (2016) Detection of carbapenemase activity in Enterobacteriaceae: comparison of the carbapenem inactivation method versus the Carba NP test. J Antimicrob Chemother 71:274–276.
    OpenUrlCrossRefPubMed
    1. Aktas E,
    2. Malkocoglu G,
    3. Otlu B,
    4. Copur Cicek A,
    5. Kulah C,
    6. Comert F,
    7. et al.
    (2017) Evaluation of the Carbapenem Inactivation Method for Detection of Carbapenemase-Producing Gram-Negative Bacteria in Comparison with the RAPIDEC CARBA NP. Microbial drug resistance 23:457–461.
    OpenUrl
  45. ↵
    1. Yamada K,
    2. Kashiwa M,
    3. Arai K,
    4. Nagano N,
    5. Saito R
    (2016) Comparison of the Modified-Hodge test, Carba NP test, and carbapenem inactivation method as screening methods for carbapenemase-producing Enterobacteriaceae. J Microbiol Methods 128:48–51.
    OpenUrlCrossRef
  46. ↵
    1. Kitao T,
    2. Miyoshi-Akiyama T,
    3. Tanaka M,
    4. Narahara K,
    5. Shimojima M,
    6. Kirikae T
    (2011) Development of an immunochromatographic assay for diagnosing the production of IMP-type metallo-beta-lactamases that mediate carbapenem resistance in Pseudomonas. J Microbiol Methods 87:330–337.
    OpenUrlCrossRefPubMed
  47. ↵
    1. Wareham DW,
    2. Shah R,
    3. Betts JW,
    4. Phee LM,
    5. Momin MH
    (2016) Evaluation of an Immunochromatographic Lateral Flow Assay (OXA-48 K-SeT) for Rapid Detection of OXA-48-Like Carbapenemases in Enterobacteriaceae. J Clin Microbiol 54:471–473.
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Glupczynski Y,
    2. Evrard S,
    3. Ote I,
    4. Mertens P,
    5. Huang TD,
    6. Leclipteux T,
    7. et al.
    (2016) Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria. J Antimicrob Chemother 71:1217–1222.
    OpenUrlCrossRefPubMed
  49. ↵
    1. Riccobono E,
    2. Antonelli A,
    3. Pecile P,
    4. Bogaerts P,
    5. D'Andrea MM,
    6. Rossolini GM
    (2018) Evaluation of the KPC K-SeT®immunochromatographic assay for the rapid detection of KPC carbapenemase producers from positive blood cultures. J Antimicrob Chemother 73:539–540.
    OpenUrlCrossRef
  50. ↵
    1. Nodari CS,
    2. Gales AC,
    3. Barth AL,
    4. Magagnin CM,
    5. Zavascki AP,
    6. Carvalhaes CG
    (2017) Detection of OXA-370 directly from rectal swabs and blood culture vials using an immunochromatographic assay. J Microbiol Methods 139:92–94.
    OpenUrl
  51. ↵
    1. Wareham DW,
    2. Phee LM,
    3. Abdul Momin MHF
    (2018) Direct detection of carbapenem resistance determinants in clinical specimens using immunochromatographic lateral flow devices. J Antimicrob Chemother.
  52. ↵
    1. Hrabak J,
    2. Walkova R,
    3. Studentova V,
    4. Chudackova E,
    5. Bergerova T
    (2011) Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3222–3227.
    OpenUrlAbstract/FREE Full Text
    1. Hrabak J,
    2. Studentova V,
    3. Walkova R,
    4. Zemlickova H,
    5. Jakubu V,
    6. Chudackova E,
    7. et al.
    (2012) Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:2441–2443.
    OpenUrlAbstract/FREE Full Text
    1. Hrabak J,
    2. Chudackova E,
    3. Walkova R
    (2013) Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev 26:103–114.
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Hoyos-Mallecot Y,
    2. Riazzo C,
    3. Miranda-Casas C,
    4. Rojo-Martin MD,
    5. Gutierrez-Fernandez J,
    6. Navarro-Mari JM
    (2014) Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods 105:98–101.
    OpenUrlCrossRef
  54. ↵
    1. Carvalhaes CG,
    2. Cayo R,
    3. Visconde MF,
    4. Barone T,
    5. Frigatto EA,
    6. Okamoto D,
    7. et al.
    (2014) Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision. J Antimicrob Chemother 69:2132–2136.
    OpenUrlCrossRefPubMed
  55. ↵
    1. Lau AF,
    2. Wang H,
    3. Weingarten RA,
    4. Drake SK,
    5. Suffredini AF,
    6. Garfield MK,
    7. et al.
    (2014) A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 52:2804–2812.
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Ellington MJ,
    2. Kistler J,
    3. Livermore DM,
    4. Woodford N
    (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 59:321–322.
    OpenUrlCrossRefPubMedWeb of Science
  57. ↵
    1. Poirel L,
    2. Walsh TR,
    3. Cuvillier V,
    4. Nordmann P
    (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123.
    OpenUrlCrossRefPubMed
  58. ↵
    1. Mendes RE,
    2. Kiyota KA,
    3. Monteiro J,
    4. Castanheira M,
    5. Andrade SS,
    6. Gales AC,
    7. et al.
    (2007) Rapid detection and identification of metallo-beta-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45:544–547.
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Monteiro J,
    2. Widen RH,
    3. Pignatari AC,
    4. Kubasek C,
    5. Silbert S
    (2012) Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother 67:906–909.
    OpenUrlCrossRefPubMedWeb of Science
  60. ↵
    1. van der Zee A,
    2. Roorda L,
    3. Bosman G,
    4. Fluit AC,
    5. Hermans M,
    6. Smits PH,
    7. et al.
    (2014) Multi-centre evaluation of real-time multiplex PCR for detection of carbapenemase genes OXA-48, VIM, IMP, NDM and KPC. BMC Infect Dis 14:27.
    OpenUrlCrossRefPubMed
  61. ↵
    1. Kaase M,
    2. Szabados F,
    3. Wassill L,
    4. Gatermann SG
    (2012) Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR. J Clin Microbiol 50:3115–3118.
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Nijhuis R,
    2. Samuelsen O,
    3. Savelkoul P,
    4. van Zwet A
    (2013) Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagn Microbiol Infect Dis 77:316–320.
    OpenUrlCrossRefPubMed
  63. ↵
    1. Anandan S,
    2. Damodaran S,
    3. Gopi R,
    4. Bakthavatchalam YD,
    5. Veeraraghavan B
    (2015) Rapid Screening for Carbapenem Resistant Organisms: Current Results and Future Approaches. J Clin Diagn Res 9:DM01–DM03.
    OpenUrl
  64. ↵
    1. Ivano de Filippis MM
    1. Lindsay JA
    (2013) in Molecular Typing in Bacterial Infections, Staphylococci, ed Ivano de Filippis MM (Springer, New York (NY)), pp 385–406.
    1. McNicholas S,
    2. Shore AC,
    3. Coleman DC,
    4. Humphreys H,
    5. Hughes DF
    (2011) DNA microarray genotyping and virulence and antimicrobial resistance gene profiling of methicillin-resistant Staphylococcus aureus bloodstream isolates from renal patients. J Clin Microbiol 49:4349–4351.
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Miller MB,
    2. Tang YW
    (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633.
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Ulyashova CE,
    2. Khalilova YI,
    3. Rubtsova CE,
    4. Edelstein CE,
    5. Alexandrova Icapital AC,
    6. Egorov CA
    (2010) Oligonucleotide microarray for the identification of carbapenemase genes of molecular classes a, B, and d. Acta Naturae 2:101–109.
    OpenUrlPubMed
  67. ↵
    1. Bhatti MM,
    2. Boonlayangoor S,
    3. Beavis KG,
    4. Tesic V
    (2014) Evaluation of FilmArray and Verigene systems for rapid identification of positive blood cultures. J Clin Microbiol 52:3433–3436.
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Ledeboer NA,
    2. Lopansri BK,
    3. Dhiman N,
    4. Cavagnolo R,
    5. Carroll KC,
    6. Granato P,
    7. et al.
    (2015) Identification of Gram-Negative Bacteria and Genetic Resistance Determinants from Positive Blood Culture Broths by Use of the Verigene Gram-Negative Blood Culture Multiplex Microarray-Based Molecular Assay. J Clin Microbiol 53:2460–2472.
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Lupo A,
    2. Papp-Wallace KM,
    3. Sendi P,
    4. Bonomo RA,
    5. Endimiani A
    (2013) Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn Microbiol Infect Dis 77:179–194.
    OpenUrlCrossRefPubMed
  70. ↵
    1. Sanger F,
    2. Nicklen S,
    3. Coulson AR
    (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467.
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Rasko DA,
    2. Webster DR,
    3. Sahl JW,
    4. Bashir A,
    5. Boisen N,
    6. Scheutz F,
    7. et al.
    (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717.
    OpenUrlCrossRefPubMedWeb of Science
  72. ↵
    1. Rohde H,
    2. Qin J,
    3. Cui Y,
    4. Li D,
    5. Loman NJ,
    6. Hentschke M,
    7. et al.
    (2011) Open-source genomic analysis of Shiga-toxin-producing E. coli O104: H4. N Engl J Med 365:718–724.
    OpenUrlCrossRefPubMedWeb of Science
  73. ↵
    1. Chin CS,
    2. Sorenson J,
    3. Harris JB,
    4. Robins WP,
    5. Charles RC,
    6. Jean-Charles RR,
    7. et al.
    (2011) The origin of the Haitian cholera outbreak strain. N Engl J Med 364:33–42.
    OpenUrlCrossRefPubMedWeb of Science
  74. ↵
    1. Leekitcharoenphon P,
    2. Nielsen EM,
    3. Kaas RS,
    4. Lund O,
    5. Aarestrup FM
    (2014) Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One 9:e87991.
    OpenUrlCrossRefPubMed
  75. ↵
    1. Koser CU,
    2. Holden MT,
    3. Ellington MJ,
    4. Cartwright EJ,
    5. Brown NM,
    6. Ogilvy-Stuart AL,
    7. et al.
    (2012) Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366:2267–2275.
    OpenUrlCrossRefPubMedWeb of Science
  76. ↵
    1. Snitkin ES,
    2. Zelazny AM,
    3. Thomas PJ,
    4. Stock F,
    5. Group NCSP,
    6. Henderson DK,
    7. et al.
    (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116.
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Koser CU,
    2. Ellington MJ,
    3. Peacock SJ
    (2014) Whole-genome sequencing to control antimicrobial resistance. Trends Genet 30:401–407.
    OpenUrlCrossRefPubMed
  78. ↵
    1. O'Neill J
    , ed (2014) Review on Antimicrobial Resistance: Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (Health and Wealth of Nations, UK) Aavailable from: http://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf.
  79. ↵
    1. WHO
    (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics (World Health Organization, Geneva (CH)).
    1. Tamma PD,
    2. Huang Y,
    3. Opene BN,
    4. Simner PJ
    (2016) Determining the Optimal Carbapenem MIC That Distinguishes Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 60:6425–6429.
    OpenUrlAbstract/FREE Full Text
    1. Osei Sekyere J,
    2. Govinden U,
    3. Essack SY
    (2015) Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria. J Appl Microbiol 119:1219–1233.
    OpenUrlCrossRef
    1. Girlich D,
    2. Poirel L,
    3. Nordmann P
    (2012) Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol 50:477–479.
    OpenUrlAbstract/FREE Full Text
    1. Tamma PD,
    2. Opene BN,
    3. Gluck A,
    4. Chambers KK,
    5. Carroll KC,
    6. Simner PJ
    (2017) Comparison of 11 Phenotypic Assays for Accurate Detection of Carbapenemase-Producing Enterobacteriaceae. J Clin Microbiol 55:1046–1055.
    OpenUrlAbstract/FREE Full Text
    1. Vasoo S,
    2. Cunningham SA,
    3. Kohner PC,
    4. Simner PJ,
    5. Mandrekar JN,
    6. Lolans K,
    7. et al.
    (2013) Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J Clin Microbiol 51:3097–3101.
    OpenUrlAbstract/FREE Full Text
    1. Poirel L,
    2. Nordmann P
    (2015) Rapidec Carba NP Test for Rapid Detection of Carbapenemase Producers. J Clin Microbiol 53:3003–3008.
    OpenUrlAbstract/FREE Full Text
    1. Bialvaei AZ,
    2. Kafil HS,
    3. Asgharzadeh M,
    4. Yousef Memar M,
    5. Yousefi M
    (2016) Current methods for the identification of carbapenemases. J Chemother 28:1–19.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 39 (9)
Saudi Medical Journal
Vol. 39, Issue 9
1 Sep 2018
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories
Ibrahim A. Al-Zahrani
Saudi Medical Journal Sep 2018, 39 (9) 861-872; DOI: 10.15537/smj.2018.9.22840

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories
Ibrahim A. Al-Zahrani
Saudi Medical Journal Sep 2018, 39 (9) 861-872; DOI: 10.15537/smj.2018.9.22840
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire