Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

The emergence of new trends in clinical laboratory diagnosis

Mohammed A. Alaidarous
Saudi Medical Journal November 2020, 41 (11) 1175-1180; DOI: https://doi.org/10.15537/smj.2020.11.25455
Mohammed A. Alaidarous
From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Santiago DN,
    2. Heidbuechel JPW,
    3. Kandell WM,
    4. Walker R,
    5. Djeu J,
    6. Engeland CE,
    7. et al.
    (2017) Fighting cancer with mathematics and viruses. Viruses 9:239.
    OpenUrl
  2. ↵
    1. Konstorum A,
    2. Vella AT,
    3. Adler AJ,
    4. Laubenbacher RC
    (2017) Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. J R Soc Interface 14:20170150.
    OpenUrlCrossRefPubMed
  3. ↵
    1. Das A,
    2. Nair MS,
    3. Peter SD
    (2020) Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer:A review. J Digit Imaging 27:doi:10.1007/s10278-019-00295-z.
  4. ↵
    1. Komura D,
    2. Ishikawa S
    (2018) Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J 16:34–42.
    OpenUrl
  5. ↵
    1. Ghesu F,
    2. Georgescu B,
    3. Zheng Y,
    4. Grbic S,
    5. Maier A,
    6. Hornegger J,
    7. et al.
    (2019) Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans Pattern Anal Mach Intell 41:176–189.
    OpenUrl
  6. ↵
    1. Maier A,
    2. Syben C,
    3. Lasser T,
    4. Riess C
    (2019) A gentle introduction to deep learning in medical image processing. Z Med Phys 29:86–101.
    OpenUrlPubMed
  7. ↵
    1. Zhang YD,
    2. Dong Z
    (2018) Special issue on “medical imaging &Image processing II” Technologies 6:doi.org/10.3390/technologies6020039.
  8. ↵
    1. Jiang F,
    2. Jiang Y,
    3. Zhi H,
    4. Dong Y,
    5. Li H,
    6. Ma S,
    7. et al.
    (2017) Artificial intelligence in healthcare:past, present and future. Stroke Vasc Neurol 2:230–243.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Park SH,
    2. Kim YH,
    3. Lee JY,
    4. Yoo S,
    5. Kim CJ
    (2019) Ethical challenges regarding artificial intelligence in medicine from the perspective of scientific editing and peer review. Sci Ed 6:91–98.
    OpenUrl
  10. ↵
    1. Dias R,
    2. Torkamani A
    (2019) Artificial intelligence in clinical and genomic diagnostics. Genome Med 11:70.
    OpenUrl
  11. ↵
    1. Theel ES
    (2016) The Past, Present, and (Possible) Future of Serologic Testing for Lyme Disease. J Clin Microbiol 54:1191–1196.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Beigh MM
    (2016) Next-generation sequencing:The translational medicine approach from “Bench to Bedside to Population” Medicines (Basel) 3:14.
    OpenUrl
  13. ↵
    1. Cristea D,
    2. Trandafir M,
    3. Bojinca VC,
    4. Ciontea AS,
    5. Andrei MM,
    6. Popa A,
    7. et al.
    (2019) Usefulness of complex bacteriological and serological analysis in patients with spondyloarthritis. Exp Ther Med 17:3465–3476.
    OpenUrl
  14. ↵
    1. Eliçabe RJ,
    2. Silva JE,
    3. Dave MN,
    4. Lacoste MG,
    5. Tamashiro H,
    6. Blas R,
    7. et al.
    (2017) Association between IL-17 and IgA in the joints of patients with inflammatory arthropathies. BMC Immunol 18:8.
    OpenUrl
  15. ↵
    1. Westblade LF,
    2. van Belkum A,
    3. Grundhoff A,
    4. Weinstock GM,
    5. Pamer EG,
    6. Pallen MJ,
    7. et al.
    (2016) Role of clinicogenomics in infectious disease diagnostics and public health microbiology. J Clin Microbiol 54:1686–1693.
    OpenUrlAbstract/FREE Full Text
    1. Hendriksen RS,
    2. Bortolaia V,
    3. Tate H,
    4. Tyson GH,
    5. Aarestrup FM,
    6. McDermott PF
    (2019) Using Genomics to Track Global Antimicrobial Resistance. Front Public Health 7:242.
    OpenUrl
    1. Gwinn M,
    2. MacCannell DR,
    3. Khabbaz RF
    (2017) Integrating Advanced Molecular Technologies into Public Health. J Clin Microbiol 55:703–714.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Armstrong GL,
    2. MacCannell DR,
    3. Taylor J,
    4. Carleton HA,
    5. Neuhaus EB,
    6. Bradbury RS,
    7. et al.
    (2019) Pathogen genomics in public health. N Engl J Med 381:2569–2580.
    OpenUrlCrossRef
  17. ↵
    1. Thanthrige-Don N,
    2. Lung O,
    3. Furukawa-Stoffer T,
    4. Buchanan C,
    5. Joseph T,
    6. Godson DL,
    7. et al.
    (2018) A novel multiplex PCR-electronic microarray assay for rapid and simultaneous detection of bovine respiratory and enteric pathogens. J Virol Methods 261:51–62.
    OpenUrl
  18. ↵
    1. Karimi R,
    2. Hajdu A
    (2016) HTSFinder:Powerful pipeline of DNA Signature discovery by parallel and distributed computing. Evol Bioinform Online 12:73–85.
    OpenUrl
  19. ↵
    1. Wang L,
    2. Wang Y,
    3. Li H,
    4. Feng X,
    5. Yuan D,
    6. Yang J
    (2019) A bidirectional label propagation based computational model for potential microbe-disease association prediction. Front Microbiol 10:684.
    OpenUrl
  20. ↵
    1. Qu J,
    2. Zhao Y,
    3. Yin J
    (2019) Identification and analysis of human microbe-disease associations by matrix decomposition and label propagation. Front Microbiol 10:291.
    OpenUrl
  21. ↵
    1. Vigne E,
    2. Garcia S,
    3. Komar V,
    4. Lemaire O,
    5. Hily JM
    (2018) Comparison of serological and molecular methods with high-throughput sequencing for the detection and quantification of grapevine fanleaf virus in vineyard samples. Front Microbiol 9:2726.
    OpenUrl
  22. ↵
    1. Caraballo Cortes K,
    2. Rosińska M,
    3. Janiak M,
    4. Stępień M,
    5. Zagordi O,
    6. Perlejewski K,
    7. et al.
    (2018) Next-generation sequencing analysis of a cluster of hepatitis C virus infections in a haematology and oncology center. PLoS One 13:e0194816.
    OpenUrlCrossRef
  23. ↵
    1. López-Palau NE,
    2. Olais-Govea JM
    (2020) Mathematical model of blood glucose dynamics by emulating the pathophysiology of glucose metabolism in type 2 diabetes mellitus. Sci Rep 10:12697.
    OpenUrl
  24. ↵
    1. Tura A,
    2. Chemello G,
    3. Szendroedi J,
    4. Göbl C,
    5. Færch K,
    6. Vrbíková J,
    7. et al.
    (2018) Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index. Diabetologia 61:1135–1141.
    OpenUrlPubMed
  25. ↵
    1. Khan F,
    2. Khan MA,
    3. Abbas S,
    4. Athar A,
    5. Siddiqui SY,
    6. Khan AH,
    7. et al.
    (2020) Cloud-based breast cancer prediction empowered with soft computing approaches. J Healthc Eng 2020, 8017496.
  26. ↵
    1. Glover NM,
    2. Altenhoff A,
    3. Dessimoz C
    (2019) Assigning confidence scores to homoeologs using fuzzy logic. Peer J 6:e6231.
    OpenUrl
  27. ↵
    1. Goyal M,
    2. Khanna D,
    3. Rana PS,
    4. Khaibullin T,
    5. Martynova E,
    6. Rizvanov AA,
    7. et al.
    (2019) Computational intelligence technique for prediction of multiple sclerosis based on serum cytokines. Front Neurol 10:781.
    OpenUrl
  28. ↵
    1. McGarrity S,
    2. Halldórsson H,
    3. Palsson S,
    4. Johansson PI,
    5. Rolfsson Ó
    (2016) Understanding the causes and implications of endothelial metabolic variation in cardiovascular disease through genome-scale metabolic modeling. Front Cardiovasc Med 3:10.
    OpenUrl
  29. ↵
    1. Eftimie R,
    2. Hassanein E
    (2018) Improving cancer detection through combinations of cancer and immune biomarkers:a modelling approach. J Transl Med 16:73.
    OpenUrl
  30. ↵
    1. Bittl JA,
    2. He Y
    (2017) Bayesian Analysis:A Practical Approach to Interpret Clinical Trials and Create Clinical Practice Guidelines. Circ Cardiovasc Qual Outcomes 10:e003563.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. da Silva JG,
    2. de Morais RM,
    3. da Silva ICR,
    4. de Arruda Mancera PF
    (2019) Mathematical models applied to thyroid cancer. Biophys Rev 11:183–189.
    OpenUrl
  32. ↵
    1. Atwater T,
    2. Cook CM,
    3. Massion PP
    (2016) The pursuit of noninvasive diagnosis of lung cancer. Semin Respir Crit Care Med 37:670–680.
    OpenUrl
  33. ↵
    1. Emmaneel A,
    2. Bogaert DJ,
    3. Van Gassen S,
    4. Tavernier SJ,
    5. Dullaers M,
    6. Haerynck F,
    7. et al.
    (2019) A computational pipeline for the diagnosis of CVID patients. Front Immunol 10:2009.
    OpenUrl
  34. ↵
    1. Pan L,
    2. Segrest JP
    (2016) Computational studies of plasma lipoprotein lipids. Biochim Biophys Acta 1858:2401–2420.
    OpenUrl
  35. ↵
    1. Fischer CL,
    2. Bates AM,
    3. Lanzel EA,
    4. Guthmiller JM,
    5. Johnson GK,
    6. Singh NK,
    7. et al.
    (2019) Computational models accurately predict multi-cell biomarker profiles in inflammation and cancer. Sci Rep 9:10877.
    OpenUrl
  36. ↵
    1. Wise AL,
    2. Manolio TA,
    3. Mensah GA,
    4. Peterson JF,
    5. Roden DM,
    6. Tamburro C,
    7. et al.
    (2019) Genomic medicine for undiagnosed diseases. Lancet 394:533–540.
    OpenUrlCrossRef
  37. ↵
    1. Di Resta C,
    2. Galbiati S,
    3. Carrera P,
    4. Ferrari M
    (2018) Next-generation sequencing approach for the diagnosis of human diseases:open challenges and new opportunities. EJIFCC 29:4–14.
    OpenUrl
    1. Posey JE,
    2. O'Donnell-Luria AH,
    3. Chong JX,
    4. Harel T,
    5. Jhangiani SN,
    6. Coban Akdemir ZH,
    7. et al.
    (2019) Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 21:798–812.
    OpenUrlPubMed
  38. ↵
    1. Jackson M,
    2. Marks L,
    3. May GHW,
    4. Wilson JB
    (2018) The genetic basis of disease. Essays Biochem 62:643–723.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Stenson PD,
    2. Mort M,
    3. Ball EV,
    4. Evans K,
    5. Hayden M,
    6. Heywood S,
    7. et al.
    (2017) The Human Gene Mutation Database:towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677.
    OpenUrlCrossRefPubMed
  40. ↵
    1. Pereira R,
    2. Oliveira J,
    3. Sousa M
    (2020) Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med 9:132.
    OpenUrl
  41. ↵
    1. Smith SL,
    2. Lones MA,
    3. Bedder M,
    4. Alty JE,
    5. Cosgrove J,
    6. Maguire RJ,
    7. et al.
    (2015) Computational approaches for understanding the diagnosis and treatment of Parkinson's disease. IET Syst Biol 9:226–233.
    OpenUrlCrossRef
  42. ↵
    1. Vaser R,
    2. Adusumalli S,
    3. Leng SN,
    4. Sikic M,
    5. Ng PC
    (2016) SIFT missense predictions for genomes. Nat Protoc 11:1–9.
    OpenUrlCrossRefPubMed
  43. ↵
    1. Anna A,
    2. Monika G
    (2018) Splicing mutations in human genetic disorders:examples, detection, and confirmation. J Appl Genet 59:253–268.
    OpenUrlCrossRef
    1. Ohno K,
    2. Takeda JI,
    3. Masuda A
    (2018) Rules and tools to predict the splicing effects of exonic and intronic mutations. Wiley Interdiscip Rev RNA 9:doi:10.1002/wrna.1451.
  44. ↵
    1. Zhou Y,
    2. Fujikura K,
    3. Mkrtchian S,
    4. Lauschke VM
    (2018) Computational methods for the pharmacogenetic interpretation of next generation sequencing data. Front Pharmacol 9:1437.
    OpenUrl
  45. ↵
    1. Visscher PM,
    2. Wray NR,
    3. Zhang Q,
    4. Sklar P,
    5. McCarthy MI,
    6. Brown MA,
    7. et al.
    (2017) 10 Years of GWAS Discovery:Biology, Function, and Translation. Am J Hum Genet 101:5–22.
    OpenUrlCrossRefPubMed
  46. ↵
    1. Camargo AV,
    2. Mackay I,
    3. Mott R,
    4. Han J,
    5. Doonan JH,
    6. Askew K,
    7. et al.
    (2018) Functional Mapping of Quantitative Trait Loci (QTLs) associated with plant performance in a wheat MAGIC mapping population. Front Plant Sci 9:887.
    OpenUrl
  47. ↵
    1. Abels E,
    2. Pantanowitz L,
    3. Aeffner F,
    4. Zarella MD,
    5. van der Laak J,
    6. Bui MM,
    7. et al.
    (2019) Computational pathology definitions, best practices, and recommendations for regulatory guidance:a white paper from the Digital Pathology Association. J Pathol 249:286–294.
    OpenUrlPubMed
    1. Robertson S,
    2. Azizpour H,
    3. Smith K,
    4. Hartman J
    (2018) Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Transl Res 194:19–35.
    OpenUrlPubMed
  48. ↵
    1. Louis DN,
    2. Feldman M,
    3. Carter AB,
    4. Dighe AS,
    5. Pfeifer JD,
    6. Bry L,
    7. et al.
    (2016) Computational pathology:A path ahead. Arch Pathol Lab Med 140:41–50.
    OpenUrlPubMed
  49. ↵
    1. Serag A,
    2. Ion-Margineanu A,
    3. Qureshi H,
    4. McMillan R,
    5. Saint Martin MJ,
    6. Diamond J,
    7. et al.
    (2019) Translational AI and deep learning in diagnostic pathology. Front Med (Lausanne) 6:185.
    OpenUrl
    1. Yasuda Y,
    2. Tokunaga K,
    3. Koga T,
    4. Sakamoto C,
    5. Goldberg IG,
    6. Saitoh N,
    7. et al.
    (2020) Computational analysis of morphological and molecular features in gastric cancer tissues. Cancer Med 9:2223–2234.
    OpenUrl
    1. Harmon SA,
    2. Tuncer S,
    3. Sanford T,
    4. Choyke PL,
    5. Türkbey B
    (2019) Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol 25:183–188.
    OpenUrl
  50. ↵
    1. Yi F,
    2. Huang J,
    3. Yang L,
    4. Xie Y,
    5. Xiao G
    (2017) Automatic extraction of cell nuclei from H&E-stained histopathological images. J Med Imaging (Bellingham) 4:027502.
    OpenUrl
  51. ↵
    1. Power SP,
    2. Moloney F,
    3. Twomey M,
    4. James K,
    5. O'Connor OJ,
    6. Maher MM
    (2016) Computed tomography and patient risk:Facts, perceptions and uncertainties. World J Radiol 8:902–915.
    OpenUrlCrossRef
  52. ↵
    1. Grover VPB,
    2. Tognarelli JM,
    3. Crossey MME,
    4. Cox IJ,
    5. Taylor-Robinson SD,
    6. McPhail MJW
    (2015) Magnetic resonance imaging:principles and techniques:Lessons for clinicians. J Clin Exp Hepatol 5:246–255.
    OpenUrl
  53. ↵
    1. Vaquero JJ,
    2. Kinahan P
    (2015) Positron emission tomography:Current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng 17:385–414.
    OpenUrl
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 41 (11)
Saudi Medical Journal
Vol. 41, Issue 11
1 Nov 2020
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The emergence of new trends in clinical laboratory diagnosis
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
The emergence of new trends in clinical laboratory diagnosis
Mohammed A. Alaidarous
Saudi Medical Journal Nov 2020, 41 (11) 1175-1180; DOI: 10.15537/smj.2020.11.25455

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The emergence of new trends in clinical laboratory diagnosis
Mohammed A. Alaidarous
Saudi Medical Journal Nov 2020, 41 (11) 1175-1180; DOI: 10.15537/smj.2020.11.25455
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • laboratory diagnosis
  • artificial intelligence
  • pathogenic disorders
  • tissue imaging
  • clinical chemistry

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire