Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

The role of cross-reactive immunity to emerging coronaviruses

Implications for novel universal mucosal vaccine design

Wael Alturaiki
Saudi Medical Journal October 2023, 44 (10) 965-972; DOI: https://doi.org/10.15537/smj.2023.44.10.20230375
Wael Alturaiki
From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia.
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Liya G,
    2. Yuguang W,
    3. Jian L,
    4. Huaiping Y,
    5. Xue H,
    6. Jianwei H, et al.
    Studies on viral pneumonia related to novel coronavirus SARS‐CoV‐2, SARS‐CoV, and MERS‐CoV: a literature review. APMIS 2020; 128: 423–432.
    OpenUrl
  2. 2.↵
    1. Hotop S-K,
    2. Reimering S,
    3. Shekhar A,
    4. Asgari E,
    5. Beutling U,
    6. Dahlke C, et al.
    Peptide microarrays coupled to machine learning reveal individual epitopes from human antibody responses with neutralizing capabilities against SARS-CoV-2. Emerg Microbes Infect 2022; 11: 1037–1048.
    OpenUrl
  3. 3.↵
    1. Zhu Z,
    2. Lian X,
    3. Su X,
    4. Wu W,
    5. Marraro GA,
    6. Zeng Y.
    From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 2020; 21: 1–14.
    OpenUrlCrossRef
  4. 4.↵
    1. Mubarak A,
    2. Alturaiki W,
    3. Hemida MG.
    Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J Immunol Res 2019; 2019: 6491738.
    OpenUrl
  5. 5.↵
    1. Millet JK,
    2. Jaimes JA,
    3. Whittaker GR.
    Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev 2021; 45: fuaa057.
    OpenUrl
  6. 6.
    1. Alturaiki W,
    2. Mubarak A,
    3. Al Jurayyan A,
    4. Hemida MG.
    The pivotal roles of the host immune response in the fine-tuning the infection and the development of the vaccines for SARS-CoV-2. Hum Vaccin Immunother 2021; 17: 3297–309.
    OpenUrl
  7. 7.
    1. Widodo S,
    2. Sulistiyanti A,
    3. Yudistira IA.
    Detection of covid-19 on localized Ct-scan images using deep learning convolution neural network. Int J Adv Eng Manag 2022; 7; 116–1256.
    OpenUrl
  8. 8.
    1. Farrag MA,
    2. Amer HM,
    3. Bhat R,
    4. Hamed ME,
    5. Aziz IM,
    6. Mubarak A, et al.
    SARS-CoV-2: an overview of virus genetics, transmission, and immunopathogenesis. Int J Environ Res Public Health 2021; 18: 6312.
    OpenUrl
  9. 9.
    1. Khan AA,
    2. Alahmari AA,
    3. Almuzaini Y,
    4. Alamri F,
    5. Alsofayan YM,
    6. Aburas A, et al.
    Potential Cross-Reactive Immunity to COVID-19 Infection in Individuals With Laboratory-Confirmed MERS-CoV Infection: A National Retrospective Cohort Study From Saudi Arabia. Front Immunol 2021; 12: 3576.
    OpenUrl
  10. 10.
    1. Jaafari A,
    2. Lekchiri S,
    3. Zahir H,
    4. Ellouali M,
    5. Badou A,
    6. Latrache H.
    A Cross-immunity between SARS-CoV-2 and MERS-CoV: interest in anti-SARS-CoV-2 serotherapy development using dromedary serum. Infect Epidemiol Microbiol 2021; 7: 161–72.
    OpenUrl
  11. 11.↵
    1. AlKhalifah JM,
    2. Seddiq W,
    3. Alshehri MA,
    4. Alhetheel A,
    5. Albarrag A,
    6. Meo SA, et al.
    Impact of MERS-CoV and SARS-CoV-2 viral infection on immunoglobulin-IgG cross-reactivity. Vaccines (Basel) 2023; 11: 552.
    OpenUrl
  12. 12.↵
    1. Jin P,
    2. Zhu F.
    Could Beta variant containing COVID-19 booster vaccines tackle Omicron variants? Lancet Reg Health Eur 2023; 28: 100623.
    OpenUrl
  13. 13.↵
    1. Bleier BS,
    2. Ramanathan Jr M,
    3. Lane AP.
    COVID-19 vaccines may not prevent nasal SARS-CoV-2 infection and asymptomatic transmission. Otolaryngol Head Neck Surg 2021; 164: 305–3057.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Alturaiki W.
    Considerations for novel COVID-19 mucosal vaccine development. Vaccines (Basel) 2022; 10: 1173.
    OpenUrl
  15. 15.↵
    1. Alturaiki W,
    2. Alkadi H,
    3. Alamri S,
    4. Awadalla ME,
    5. Alfaez A,
    6. Mubarak A, et al.
    Association between the expression of toll-like receptors, cytokines, and homeostatic chemokines in SARS-CoV-2 infection and COVID-19 severity. Heliyon 2023; 9: e12653.
    OpenUrl
  16. 16.↵
    1. Woo PC,
    2. Lau SK,
    3. Huang Y,
    4. Yuen K-Y.
    Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood) 2009; 234: 1117–1127.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Chong ZX,
    2. Liew WPP,
    3. Ong HK,
    4. Yong CY,
    5. Shit CS,
    6. Ho WY, et al.
    Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathol Res Pract 2021; 225: 153565.
    OpenUrl
  18. 18.↵
    1. Waqar K,
    2. Zahid M.
    COVID-19, MERS and SARS; understanding similarities and differences. Life Sci 2020; 1: 7.
    OpenUrl
  19. 19.↵
    1. Cruz-Rodrıguez L,
    2. Sanchez B,
    3. Hochwımmer B,
    4. Hadda T,
    5. Almalkı A,
    6. Dilsiz N.
    How to Evaluate Viral Transmission in Enclosed Areas. Medical Geology saving places from Covid-19. J Biosci Bioeng 2020; 1: 1–15.
    OpenUrl
  20. 20.↵
    1. Irabien-Ortiz Á,
    2. Carreras-Mora J,
    3. Sionis A,
    4. Pamies J,
    5. Montiel J,
    6. Tauron M.
    Fulminant myocarditis due to COVID-19. Rev Esp Cardiol (Engl Ed) 2020; 73: 503–504.
    OpenUrl
  21. 21.↵
    1. Ojo AS,
    2. Okediji PT,
    3. Akin-Onitolo AP,
    4. Ojo OS,
    5. Opaleye OO.
    Predicting the risk of re-infection from SARS-CoV-2 using the known pattern of adaptive immune response to previous human coronavirus outbreaks. 2020.
  22. 22.↵
    1. Gartner MJ,
    2. Subbarao K.
    The threat of zoonotic coronaviruses. Microbiol Aust 2021; 42: 4–9.
    OpenUrl
  23. 23.↵
    1. Engelbrecht F,
    2. Madhi S,
    3. Scholes R.
    Pandemic-stage propagation dynamics in South Africa suggest pre-existing cross-reactive protection against severe Covid-19. Res Sq 2021.
  24. 24.
    1. Agrati C,
    2. Carsetti R,
    3. Bordoni V,
    4. Sacchi A,
    5. Quintarelli C,
    6. Locatelli F, et al.
    The immune response as a double‐edged sword: The lesson learnt during the COVID‐19 pandemic. Immunology 2022; 167: 287–302.
    OpenUrl
  25. 25.
    1. Sotgia F,
    2. Lisanti MP.
    Using the common cold virus as a naturally occurring vaccine to prevent COVID-19: Lessons from Edward Jenner. Aging (Albany NY) 2020; 12: 18797–18803.
    OpenUrl
  26. 26.↵
    1. Murray SM,
    2. Ansari AM,
    3. Frater J,
    4. Klenerman P,
    5. Dunachie S,
    6. Barnes E, et al.
    The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2022; 23: 304–316.
    OpenUrl
  27. 27.↵
    1. van Rooyen C,
    2. Brauer M,
    3. Swanepoel P,
    4. van den Berg S,
    5. van der Merwe C,
    6. van der Merwe M, et al.
    Comparison of T-cell immune responses to SARS-CoV-2 spike (S) and nucleocapsid (N) protein using an in-house flow-cytometric assay in laboratory employees with and without previously confirmed COVID-19 in South Africa: Nationwide cross-sectional study. J Clin Pathol 2022; 76: 384–390.
    OpenUrl
  28. 28.↵
    1. Gombar S,
    2. Bergquist T,
    3. Pejaver V,
    4. Hammarlund NE,
    5. Murugesan K,
    6. Mooney S, et al.
    SARS-CoV-2 infection and COVID-19 severity in individuals with prior seasonal coronavirus infection. Diagn Microbiol Infect Dis 2021; 100: 115338.
    OpenUrlCrossRef
  29. 29.↵
    1. Song G,
    2. He WT,
    3. Callaghan S,
    4. Anzanello F,
    5. Huang D,
    6. Ricketts J, et al.
    Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat Commun 2021; 12: 2938.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Geanes ES,
    2. LeMaster C,
    3. Fraley ER,
    4. Khanal S,
    5. McLennan R,
    6. Grundberg E, et al
    . Cross-reactive antibodies elicited to conserved epitopes on SARS-CoV-2 spike protein after infection and vaccination.Sci Rep 2022; 12: 1–15.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Bradley T,
    2. Geanes E,
    3. LeMaster C,
    4. Fraley ER,
    5. Khanal S,
    6. McLennan R, et al.
    Identification of conserved coronavirus epitopes targeted by antibodies after SARS-CoV-2 infection or vaccination. J Immunol 2022; 208: 65.03.
    OpenUrl
  32. 32.↵
    1. Miyara M,
    2. Sterlin D,
    3. Anna F,
    4. Marot S,
    5. Mathian A,
    6. Atif M, et al.
    Pre-COVID-19 humoral immunity to common coronaviruses does not confer cross-protection against SARS-CoV-2. MedRxiv 2020; 08.
  33. 33.↵
    1. Grobben M,
    2. van der Straten K,
    3. Brouwer PJ,
    4. Brinkkemper M,
    5. Maisonnasse P,
    6. Dereuddre-Bosquet N, et al.
    Cross-reactive antibodies after SARS-CoV-2 infection and vaccination. Elife 2021; 10: e70330.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Dangi T,
    2. Palacio N,
    3. Sanchez S,
    4. Park M,
    5. Class J,
    6. Visvabharathy L, et al.
    Cross-protective immunity following coronavirus vaccination and coronavirus infection. J Clin Invest 2021; 131: e151969.
    OpenUrl
  35. 35.↵
    1. Kaewsapsak P,
    2. Chantaravisoot N,
    3. Nimsamer P,
    4. Mayuramart O,
    5. Mankhong S,
    6. Payungporn S.
    In Silico Evaluation of CRISPR-Based Assays for Effective Detection of SARS-CoV-2. Pathogens 2022; 11: 968.
    OpenUrl
  36. 36.↵
    1. Lee H-K,
    2. Lee B-H,
    3. Seok S-H,
    4. Baek M-W,
    5. Lee H-Y,
    6. Kim D-J, et al.
    Production of specific antibodies against SARS-coronavirus nucleocapsid protein without cross reactivity with human coronaviruses 229E and OC43. J Vet Sci 2010; 11: 165–167.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Shurrab FM,
    2. Al-Sadeq DW,
    3. Amanullah FH,
    4. Al-Absi ES,
    5. Qotba H,
    6. Yassine HM, et al.
    Low Risk of Serological Cross-Reactivity between the Dengue Virus and SARS-CoV-2-IgG Antibodies Using Advanced Detection Assays. Intervirology 2022; 65: 224–229.
    OpenUrl
  38. 38.↵
    1. Fukumoto T,
    2. Iwasaki S,
    3. Fujisawa S,
    4. Hayasaka K,
    5. Sato K,
    6. Oguri S, et al.
    Efficacy of a novel SARS-CoV-2 detection kit without RNA extraction and purification. Int J Infect Dis 2020; 98: 16–17.
    OpenUrl
  39. 39.↵
    1. Sharifi M,
    2. Hasan A,
    3. Haghighat S,
    4. Taghizadeh A,
    5. Attar F,
    6. Bloukh SH, et al.
    Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: challenges and opportunities. Talanta 2021; 223: 121704.
    OpenUrl
  40. 40.↵
    1. Hu C,
    2. Wang Z,
    3. Ren L,
    4. Hao Y,
    5. Zhu M,
    6. Jiang H, et al.
    Pre-existing anti-HCoV-OC43 immunity influences the durability and cross-reactivity of humoral response to SARS-CoV-2 vaccination. Front Cell Infect Microbiol 2022; 1258: 978440.
    OpenUrl
  41. 41.↵
    1. Song G,
    2. He W-t,
    3. Callaghan S,
    4. Anzanello F,
    5. Huang D,
    6. Ricketts J, et al.
    Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat Commun 2021; 12: 2938.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Low JG,
    2. Wijaya L,
    3. Li GK,
    4. Lim EY,
    5. Shum AK,
    6. Cheung Y-B, et al.
    The role of pre-existing cross-reactive antibodies in determining the efficacy of vaccination in humans: study protocol for a randomized controlled trial. Trials 2015; 16: 147.
    OpenUrlCrossRef
  43. 43.↵
    1. Zhao F,
    2. Zai X,
    3. Zhang Z,
    4. Xu J,
    5. Chen W.
    Challenges and developments in universal vaccine design against SARS-CoV-2 variants. NPJ Vaccines 2022; 7: 167.
    OpenUrl
  44. 44.↵
    1. Honda-Okubo Y,
    2. Barnard D,
    3. Ong CH,
    4. Peng B-H,
    5. Tseng C-TK,
    6. Petrovsky N.
    Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 2015; 89: 2995–3007.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Edwards CE,
    2. Yount BL,
    3. Graham RL,
    4. Leist SR,
    5. Hou YJ,
    6. Dinnon III KH, et al.
    Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc Natl Acad Sci U S A 2020; 117: 26915–26925.
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. Liu Y,
    2. Hu G,
    3. Wang Y,
    4. Ren W,
    5. Zhao X,
    6. Ji F, et al.
    Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci U S A 2021; 118: e2025373118.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Zhou P,
    2. Shi Z-L.
    SARS-CoV-2 spillover events. Science 2021; 371: 120–122.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Wang S,
    2. Wu D,
    3. Xiong H,
    4. Wang J,
    5. Tang Z,
    6. Chen Z, et al.
    Potential of conserved antigenic sites in development of universal SARS-like coronavirus vaccines. Front Immunol 2022; 13: 952650.
    OpenUrl
  49. 49.↵
    1. Feldman J,
    2. Bals J,
    3. Denis KS,
    4. Lam EC,
    5. Hauser BM,
    6. Ronsard L, et al.
    Naive human B cells can neutralize SARS-CoV-2 through recognition of its receptor binding domain. bioRxiv 2021.
  50. 50.↵
    1. Mudgal R,
    2. Nehul S,
    3. Tomar S.
    Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum Vaccin Immunother 2020; 16: 2921–31.
    OpenUrlCrossRef
  51. 51.↵
    1. Focosi D,
    2. Maggi F,
    3. Casadevall A.
    Mucosal vaccines, sterilizing immunity, and the future of SARS-CoV-2 virulence. Viruses 2022; 14: 187.
    OpenUrlCrossRef
  52. 52.↵
    1. Longet S,
    2. Hargreaves A,
    3. Healy S,
    4. Brown R,
    5. Hornsby HR,
    6. Meardon N, et al.
    mRNA vaccination drives differential mucosal neutralizing antibody profiles in naïve and SARS-CoV-2 previously-infected individuals. Front Immunol 2022: 5215.
  53. 53.↵
    1. Chandrasekar SS,
    2. Phanse Y,
    3. Hildebrand RE,
    4. Hanafy M,
    5. Wu C-W,
    6. Hansen CH, et al.
    Localized and systemic immune responses against SARS-CoV-2 following mucosal immunization. Vaccines (Basel) 2021; 9: 132.
    OpenUrl
  54. 54.↵
    1. Woldemeskel BA,
    2. Dykema AG,
    3. Garliss CC,
    4. Cherfils S,
    5. Smith KN,
    6. Blankson JN.
    CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses. J Clin Invest 2022; 132: e156083.
    OpenUrl
  55. 55.↵
    1. Ryzhikov AB,
    2. Ryzhikov EA,
    3. Bogryantseva MP,
    4. Danilenko ED,
    5. Imatdinov IR,
    6. Nechaeva EA, et al.
    Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Vestn Ross Akad Med Nauk 2021;76: 5–19.
    OpenUrl
  56. 56.↵
    1. Dreyfus C,
    2. Laursen NS,
    3. Kwaks T,
    4. Zuijdgeest D,
    5. Khayat R,
    6. Ekiert DC, et al.
    Highly conserved protective epitopes on influenza B viruses. Science 2012; 337: 1343–1348.
    OpenUrlAbstract/FREE Full Text
  57. 57.
    1. Pardi N,
    2. Carreño JM,
    3. O’Dell G,
    4. Tan J,
    5. Bajusz C,
    6. Muramatsu H, et al.
    Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses. Nat Commun 2022; 13: 4677.
    OpenUrl
  58. 58.↵
    1. Rcheulishvili N,
    2. Mao J,
    3. Papukashvili D,
    4. Liu C,
    5. Wang Z,
    6. Zhao J, et al.
    Designing multi-epitope mRNA construct as a universal influenza vaccine candidate for future epidemic/pandemic preparedness. Int J Biol Macromol 2023; 226: 885–899.
    OpenUrl
  59. 59.↵
    1. Stoddard CI,
    2. Galloway J,
    3. Chu HY,
    4. Shipley MM,
    5. Sung K,
    6. Itell HL, et al.
    Epitope profiling reveals binding signatures of SARS-CoV-2 immune response in natural infection and cross-reactivity with endemic human CoVs. Cell Rep 2021; 35: 109164.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Prakash S,
    2. Srivastava R,
    3. Coulon P-G,
    4. Dhanushkodi NR,
    5. Chentoufi AA,
    6. Tifrea DF, et al.
    Genome-wide B cell, CD4+, and CD8+ T cell epitopes that are highly conserved between human and animal coronaviruses, identified from SARS-CoV-2 as targets for preemptive pan-coronavirus vaccines. J Immunol 2021; 206: 2566–2582.
    OpenUrlAbstract/FREE Full Text
  61. 61.↵
    1. Rayati Damavandi A,
    2. Dowran R,
    3. Al Sharif S,
    4. Kashanchi F,
    5. Jafari R.
    Molecular variants of SARS-CoV-2: Antigenic properties and current vaccine efficacy. Med Microbiol Immunol 2022; 211: 79–103.
    OpenUrl
  62. 62.↵
    1. Rodrigues-da-Silva RN,
    2. Conte FP,
    3. da Silva G,
    4. Carneiro-Alencar AL,
    5. Gomes PR,
    6. Kuriyama SN, et al.
    Identification of B-Cell linear epitopes in the nucleocapsid (N) protein B-cell linear epitopes conserved among the main SARS-CoV-2 variants. Viruses 2023; 15: 923.
    OpenUrl
  63. 63.↵
    1. Antonelli A
    1. Stevceva L,
    2. Ferrari MG. Mucosal Adjuvants
    . In: Antonelli A, editor. Current Pharmaceutical Design. Pisa: Bentham Science Publisher; 2005. p. 801–811.
  64. 64.↵
    1. Alturaiki W,
    2. McFarlane AJ,
    3. Rose K,
    4. Corkhill R,
    5. McNamara PS,
    6. Schwarze J, et al.
    Expression of the B cell differentiation factor BAFF and chemokine CXCL13 in a murine model of respiratory syncytial virus infection. Cytokine 2018; 110: 267–271.
    OpenUrl
  65. 65.↵
    1. Schultheiß C,
    2. Paschold L,
    3. Willscher E,
    4. Simnica D,
    5. Wöstemeier A,
    6. Muscate F, et al.
    Maturation trajectories and transcriptional landscape of plasmablasts and autoreactive B cells in COVID-19. iScience 2021; 24: 103325.
    OpenUrl
  66. 66.↵
    1. Samy E,
    2. Wax S,
    3. Huard B,
    4. Hess H,
    5. Schneider P.
    Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol 2017; 36: 3–19.
    OpenUrlCrossRef
  67. 67.↵
    1. Nakayamada S,
    2. Tanaka Y.
    BAFF-and APRIL-targeted therapy in systemic autoimmune diseases. Inflamm Regen 2016; 36: 1–6.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 44 (10)
Saudi Medical Journal
Vol. 44, Issue 10
1 Oct 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of cross-reactive immunity to emerging coronaviruses
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
The role of cross-reactive immunity to emerging coronaviruses
Wael Alturaiki
Saudi Medical Journal Oct 2023, 44 (10) 965-972; DOI: 10.15537/smj.2023.44.10.20230375

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The role of cross-reactive immunity to emerging coronaviruses
Wael Alturaiki
Saudi Medical Journal Oct 2023, 44 (10) 965-972; DOI: 10.15537/smj.2023.44.10.20230375
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • cross-reactivity
  • mucosal vaccine
  • BAFF
  • B-cell
  • SARS-CoV-2
  • COVID-19

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire