Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Understanding the prevalence, progression, and management of metabolic syndrome in Saudi Arabia

Faez Falah Alshehri
Saudi Medical Journal October 2023, 44 (10) 973-986; DOI: https://doi.org/10.15537/smj.2023.44.10.20230450
Faez Falah Alshehri
From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Faez Falah Alshehri
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Reaven GM.
    Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1607.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Alberti KGMM,
    2. Zimmet P.
    The metabolic syndrome: time to reflect. Curr Diab Rep 2006; 6: 259–261.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Daubresse JC.
    The importance of syndrome X in daily practice. Rev Med Brux 2000; 21: 473–477.
    OpenUrlPubMed
  4. 4.↵
    1. Kaplan NM
    . The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989; 149: 1514–1520.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Albert MA,
    2. Glynn RJ,
    3. Buring J,
    4. Ridker PM.
    Impact of traditional and novel risk factors on the relationship between socioeconomic status and incident cardiovascular events. Circulation 2006; 114: 2619–2626.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Zimmet P
    , M M Alberti KG, Serrano Ríos M. A new international diabetes federation worldwide definition of the metabolic syndrome: the rationale and the results. Rev Esp Cardiol 2005; 58: 1371–1376.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Borena W,
    2. Edlinger M,
    3. Bjørge T,
    4. Häggström C,
    5. Lindkvist B,
    6. Nagel G, et al.
    A prospective study on metabolic risk factors and gallbladder cancer in the metabolic syndrome and cancer (Me-Can) collaborative study. PLoS One 2014; 9: e89368.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Thomas G,
    2. Sehgal AR,
    3. Kashyap SR,
    4. Srinivas TR,
    5. Kirwan JP,
    6. Navaneethan SD.
    Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2011; 6: 2364–2373.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Kassi E,
    2. Pervanidou P,
    3. Kaltsas G,
    4. Chrousos G.
    Metabolic syndrome: definitions and controversies. BMC Medicine 2011; 9: 48.
    OpenUrl
  10. 10.↵
    1. Al-Daghri NM,
    2. Al-Attas OS,
    3. Alokail MS,
    4. Alkharfy KM,
    5. Sabico SLB,
    6. George P. Chrousos
    . Decreasing prevalence of the full metabolic syndrome but a persistently high prevalence of dyslipidemia among adult Arabs. PLOS ONE 2010; 5: e12159.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Barrimah IE,
    2. Mohaimeed AR,
    3. Midhat F.
    Prevalence of metabolic syndrome among Qassim University Personnel in Saudi Arabia. Int J Health Sci (Qassim) 2009; 3: 133–142.
    OpenUrlPubMed
  12. 12.↵
    1. Prabhakaran D,
    2. Anand SS.
    The metabolic syndrome: an emerging risk state for cardiovascular disease. Vasc Med 2004; 9: 55–68.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.
    1. Villegas R,
    2. Perry IJ,
    3. Creagh D,
    4. Hinchion R,
    5. O’Halloran D.
    Prevalence of the metabolic syndrome in middle-aged men and women. Diabetes Care 2003; 26: 3198–3199.
    OpenUrlFREE Full Text
  14. 14.↵
    1. Palaniappan L,
    2. Carnethon MR,
    3. Wang Y,
    4. Hanley AJG,
    5. Fortmann SP,
    6. Haffner SM, et al.
    Predictors of the incident metabolic syndrome in adults: The insulin resistance atherosclerosis study. Diabetes Care 2004; 27: 788–793.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Berlin I,
    2. Lin S,
    3. Lima JAC,
    4. Bertoni AG.
    Smoking Status and Metabolic Syndrome in the Multi-Ethnic Study of Atherosclerosis. A cross-sectional study. Tob Induc Dis 2012; 10: 9.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Bennet AM,
    2. Brismar K,
    3. Hallqvist J,
    4. Reuterwall C,
    5. De Faire U.
    The risk of myocardial infarction is enhanced by a synergistic interaction between serum insulin and smoking. Eur J Endocrinol 2002; 147: 641–647.
    OpenUrlAbstract
  17. 17.↵
    1. Grundy SM,
    2. Brewer HB,
    3. Cleeman JI,
    4. Smith SC Jr.,
    5. Lenfant C;
    6. American Heart Association, et al.
    Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004; 109: 433–438.
    OpenUrlFREE Full Text
  18. 18.↵
    1. Alberti KGMM,
    2. Zimmet P,
    3. Shaw J.
    Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006; 23: 469–480.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Osei-Yeboah J,
    2. Owiredu WKBA,
    3. Norgbe GK,
    4. Lokpo 1,
    5. Jones Gyamfi SY,
    6. Allotey EA, et al.
    The prevalence of metabolic syndrome and its components among people with type 2 diabetes in the Ho Municipality, Ghana: A cross-sectional study. Int J Chronic Dis 2017; 2017: e8765804.
    OpenUrl
  20. 20.↵
    1. Saeed AA.
    Prevalence of metabolic syndrome and its components among Saudi young adults 18 - 30 years of age. Open J Endocr Metab Dis 2019; 9: 49–59.
    OpenUrl
  21. 21.↵
    1. Al-Nozha MM,
    2. Arafah MR,
    3. Al-Mazrou YY, et al.
    Coronary artery disease in Saudi Arabia. Saudi Med J 2004; 25: 1165–1171.
    OpenUrlPubMed
  22. 22.↵
    1. Ruan X,
    2. Guan Y.
    Metabolic syndrome and chronic kidney disease. J Diabetes 2009; 1: 236–245.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Alzaabi A,
    2. Al-Kaabi J,
    3. Al-Maskari F,
    4. Farhood AF,
    5. Ahmed LA, et al.
    Prevalence of diabetes and cardio-metabolic risk factors in young men in the United Arab Emirates: A cross-sectional national survey. Endocrinol Diabetes Metab 2019; 2: e00081.
    OpenUrl
  24. 24.↵
    1. Aljefree N,
    2. Ahmed F.
    Prevalence of cardiovascular disease and associated risk factors among adult population in the Gulf Region: A systematic review. Adv. Public Health 2015; 2015: e235101.
    OpenUrl
  25. 25.↵
    1. Al-Rubean K,
    2. Youssef AM,
    3. AlFarsi Y,
    4. Al-Sharqawi AH,
    5. Bawazeer N,
    6. AlOtaibi MT, et al.
    Anthropometric cutoff values for predicting metabolic syndrome in a Saudi community: from the SAUDI-DM study. Ann Saudi Med 2017; 37: 21–30.
    OpenUrl
  26. 26.↵
    1. Akbar DH.
    Metabolic syndrome is common in Saudi type 2 diabetic patients. Diabetes International 2002; 12: 47–49.
    OpenUrl
  27. 27.↵
    1. Al-Nozha M,
    2. Al-Khadra A,
    3. Arafah MR,
    4. Al-Maatouq MA,
    5. Khalil MZ,
    6. Khan NB, et al.
    Metabolic syndrome in Saudi Arabia. Saudi Med J 2005; 26: 1918–1925.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Ford ES,
    2. Giles WH,
    3. Mokdad AH.
    Increasing prevalence of the metabolic syndrome among u.s. Adults. Diabetes Care 2004; 27: 2444–2449.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Mohamud WNW,
    2. Ismail AA-S,
    3. Sharifuddin A,
    4. Ismail IS,
    5. Musa KI,
    6. Kadir KA, et al.
    Prevalence of metabolic syndrome and its risk factors in adult Malaysians: results of a nationwide survey. Diabetes Res Clin Pract 2011; 91: 239–245.
    OpenUrlPubMed
  30. 30.↵
    1. Alzahrani AM,
    2. Karawagh AM,
    3. Alshahrani FM,
    4. Naser TA,
    5. Ahmed A,
    6. Alsharef EH.
    Prevalence and predictors of metabolic syndrome among healthy Saudi adults. Diab Vasc Dis Res 2012; 12: 78–80.
    OpenUrl
  31. 31.↵
    1. Mooradian AD.
    Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 2009; 5: 150159.
    OpenUrl
  32. 32.↵
    1. Al-Rubeaan K,
    2. Bawazeer N,
    3. Al Farsi Y,
    4. Amira M Youssef 4,
    5. Abdulrahman A Al-Yahya 5,
    6. Hamid AlQumaidi, et al.
    Prevalence of metabolic syndrome in Saudi Arabia - a cross sectional study. BMC Endocr Disord 2018; 18: 16.
    OpenUrl
  33. 33.↵
    1. Al-Qurashi MM,
    2. El-Mouzan MI,
    3. Al-Herbish AS,
    4. Al-Salloum AA,
    5. Al-Omar AA.
    Age related reference ranges of heart rate for Saudi children and adolescents. Saudi Med J 2009; 30: 926–931.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Alsunni A,
    2. Majeed F,
    3. Yar T,
    4. AlRahim A,
    5. Alhawaj AF,
    6. Alzaki M.
    Effects of energy drink consumption on corrected QT interval and heart rate variability in young obese Saudi male university students. Ann Saudi Med 2015; 35: 282–287.
    OpenUrl
  35. 35.↵
    1. Alansare A,
    2. Alford K,
    3. Lee S,
    4. Church T,
    5. Jung HC.
    The effects of high-intensity interval training vs. moderate-intensity continuous training on heart rate variability in physically inactive adults. Int J Environ Res Public Health 2018; 15: 1508.
    OpenUrl
  36. 36.↵
    1. Alkahtani S,
    2. Flatt AA,
    3. Kanas J,
    4. Aldyel A,
    5. Habib S.
    Role of type and volume of recreational physical activity on heart rate variability in men. Int J Environ Res Public Health 2020; 17: 2719.
    OpenUrl
  37. 37.↵
    1. Alassiri M,
    2. Alanazi A,
    3. Aldera H,
    4. Alqahtani SA,
    5. Alraddadi AS,
    6. Alberreet MS, et al.
    Exposure to cell phones reduces heart rate variability in both normal-weight and obese normotensive medical students. Explore (NY) 2020; 16: 264–270.
    OpenUrl
  38. 38.↵
    1. Elemam AE,
    2. Omer ND,
    3. Ibrahim NM,
    4. Ali AB.
    The effect of dipping tobacco on pulse wave analysis among adult males. Biomed Res Int 2020; 2020: e7382164.
    OpenUrl
  39. 39.↵
    1. Latif R,
    2. Majeed F.
    Association between chocolate consumption frequency and heart rate variability indices. Explore (NY) 2020; 16: 372–375.
    OpenUrl
  40. 40.↵
    1. Al-Rubeaan K,
    2. Al-Manaa H,
    3. Khoja T,
    4. Ahmad N,
    5. Al-Sharqawi A,
    6. Siddiqui K, et al.
    The Saudi abnormal glucose metabolism and diabetes impact study (SAUDI-DM). Ann Saudi Med 2014; 34: 465–475.
    OpenUrl
  41. 41.↵
    1. Mohieldein AH,
    2. Hasan M,
    3. Al-Harbi KK,
    4. Alodailah SS,
    5. Azahrani RM,
    6. Al-Mushawwah SA.
    Dyslipidemia and reduced total antioxidant status in young adult Saudis with prediabetes. Diabetes Metab Syndr 2015; 9: 287–291.
    OpenUrl
  42. 42.↵
    1. Khan MA,
    2. Faiz A.
    Antimicrobial resistance patterns of Pseudomonas aeruginosa in tertiary care hospitals of Makkah and Jeddah. Ann Saudi Med 2016; 36: 23–28.
    OpenUrlPubMed
  43. 43.↵
    1. Wallace AM,
    2. McMahon AD,
    3. Packard CJ,
    4. Kelly A,
    5. Shepherd J,
    6. Gaw A, et al.
    Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation 2001; 104: 3052–3056.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Lindsay RS,
    2. Funahashi T,
    3. Hanson RL,
    4. Matsuzawa Y,
    5. Tanaka S,
    6. Tataranni PA, et al.
    Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360: 57–58.
    OpenUrlCrossRefPubMedWeb of Science
  45. 45.↵
    1. Pischon T,
    2. Girman CJ,
    3. Hotamisligil GS,
    4. Rifai N,
    5. Hu FB,
    6. Rimm EB.
    Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291: 1730–1737.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Vaněčková I,
    2. Maletínská L,
    3. Behuliak M,
    4. Nagelová V,
    5. Zicha K,
    6. Kuneš J.
    Obesity-related hypertension: possible pathophysiological mechanisms. J Endocrinol 2014; 223: R63–R78.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Mehta PK,
    2. Griendling KK
    . Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292: C82–C97
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.↵
    1. Hotamisligil GS,
    2. Murray DL,
    3. Choy LN,
    4. Spiegelman BM.
    Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 1994; 91: 4854–4858.
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Tsigos C,
    2. Kyrou I,
    3. Chala E,
    4. Tsapogas P,
    5. Stavridis JC,
    6. Raptis SA, et al.
    Circulating tumor necrosis factor alpha concentrations are higher in abdominal versus peripheral obesity. Metabolism 1999; 48: 1332–1335.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Tooke JE,
    2. Goh KL.
    Endotheliopathy precedes type 2 diabetes. Diabetes Care 1998; 21: 2047–2049.
    OpenUrlFREE Full Text
  51. 51.↵
    1. Tamakoshi K,
    2. Yatsuya H,
    3. Kondo T,
    4. Hori Y,
    5. Ishikawa M,
    6. Zhang H, et al.
    The metabolic syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state. Int J Obes 2003; 27: 443–449.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Pasceri V,
    2. Willerson JT,
    3. Yeh ETH.
    Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102: 2165–2168.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Zwaka TP,
    2. Hombach V,
    3. Torzewski J.
    C-reactive protein–mediated low density lipoprotein uptake by Macrophages.Circulation 2001; 103: 1194–1197.
    OpenUrlAbstract/FREE Full Text
  54. 54.↵
    1. Kavazarakis E,
    2. Moustaki M,
    3. Gourgiotis D,
    4. Zeis PM,
    5. Bossios A,
    6. Mavri A, et al.
    The impact of serum lipid levels on circulating soluble adhesion molecules in childhood. Pediatr Res 2002; 52: 454–458.
    OpenUrlPubMed
  55. 55.↵
    1. Pradhan AD,
    2. Rifai N,
    3. Ridker PM.
    Soluble intercellular adhesion molecule-1, soluble vascular adhesion molecule-1, and the development of symptomatic peripheral arterial disease in men. Circulation 2002;106:820–825.
    OpenUrlAbstract/FREE Full Text
  56. 56.↵
    1. Greenberg AS,
    2. McDaniel ML.
    Identifying the links between obesity, insulin resistance and β‐cell function: potential role of adipocyte‐derived cytokines in the pathogenesis of type 2 diabetes. Eur J Clin Invest 2002; 32: 24–34.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Saghizadeh M,
    2. Ong JM,
    3. Garvey WT,
    4. Henry RR,
    5. Kern PA
    .JCI - The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest 1996; 97: 1111–1116.
    OpenUrlCrossRefPubMedWeb of Science
  58. 58.
    1. Katsuki A,
    2. Sumida Y,
    3. Murashima S,
    4. Murata K,
    5. Takarada Y,
    6. Ito K, et al.
    Serum levels of tumor necrosis factor-α are increased in obese patients with noninsulin-dependent diabetes mellitus 1. J Clin Endocrinol Metab 1998; 83: 859–862.
    OpenUrlCrossRefPubMedWeb of Science
  59. 59.↵
    1. Campbell IL,
    2. Oxbrow L,
    3. Harrison LC.
    Interferon-γ: pleiotropic effects on a rat pancreatic beta cell line. Mol Cell Endocrinol 1987; 52: 161–167.
    OpenUrlPubMed
  60. 60.↵
    1. Esposito K,
    2. Nicoletti G,
    3. Giugliano D. Obesity
    , cytokines and endothelial dysfunction: A link for the raised cardiovascular risk associated with visceral obesity. J Endocrinol Invest 2002; 25: 646–649.
    OpenUrlPubMedWeb of Science
  61. 61.
    1. Grimble RF.
    Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care 2002; 5: 551–559.
    OpenUrlCrossRefPubMedWeb of Science
  62. 62.↵
    1. Lyon CJ,
    2. Law RE,
    3. Hsueh WA
    . Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 2003; 144: 2195–2200.
    OpenUrlCrossRefPubMedWeb of Science
  63. 63.↵
    1. Ouchi N,
    2. Kihara S,
    3. Arita Y,
    4. Okamoto Y,
    5. Maeda K,
    6. Kuriyama H, et al.
    Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 2000; 102: 1296–1301.
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. Rubio-Ruiz ME,
    2. El Hafidi M,
    3. Pérez-Torres I,
    4. Baños G,
    5. Guarner V.
    Medicinal agents and metabolic syndrome. Curr Med Chem 2013; 20: 2626–2640.
    OpenUrl
  65. 65.↵
    1. Linseisen J,
    2. Welch AA,
    3. Ocké M,
    4. P Amiano,
    5. C Agnoli,
    6. P Ferrari, et al.
    Dietary fat intake in the European Prospective Investigation into Cancer and Nutrition: results from the 24-h dietary recalls. Eur J Clin Nutr 2009; 63: S61–S80.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Gillingham LG,
    2. Harris-Janz S,
    3. Jones PJH.
    Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 2011; 46: 209–228.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. Álvarez-Pérez J,
    2. Sánchez-Villegas A,
    3. Díaz-Benítez EM, et al.
    Influence of a Mediterranean dietary pattern on body fat distribution: Results of the PREDIMED-Canarias intervention randomized trial. J Am Coll Nutr 2016; 35: 568–580.
    OpenUrl
  68. 68.↵
    1. Saibandith B,
    2. Spencer JPE,
    3. Rowland IR,
    4. Commane DM.
    Olive Polyphenols and the Metabolic Syndrome. Molecules 2017; 22: 1082.
    OpenUrl
  69. 69.
    1. Wainstein J,
    2. Ganz T,
    3. Boaz M, et al.
    Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food 2012; 15: 605–610.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Pinto J,
    2. Paiva-Martins F,
    3. Corona G,
    4. Debnam ES,
    5. Oruna-Concha MJ,
    6. Vauzour D, et al.
    Absorption and metabolism of olive oil secoiridoids in the small intestine. Br J Nutr 2011; 105: 1607–1618.
    OpenUrlPubMed
  71. 71.↵
    1. Tripoli E,
    2. Giammanco M,
    3. Tabacchi G,
    4. Majo DD,
    5. Giammanco S,
    6. La Guardia M.
    The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 2005; 18: 98–112.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Wang C,
    2. Harris WS,
    3. Chung M,
    4. Lichtenstein AH,
    5. Balk EM,
    6. Kupelnick B, et al.
    n−3 Fatty acids from fish or fish-oil supplements, but not a-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 2006; 84: 5–17.
    OpenUrlAbstract/FREE Full Text
  73. 73.↵
    1. Guo W,
    2. Xie W,
    3. Lei T,
    4. Hamilton JA.
    Eicosapentaenoic acid, but not oleic acid, stimulates beta-oxidation in adipocytes. Lipids 2005; 40: 815–821.
    OpenUrlCrossRefPubMed
  74. 74.↵
    1. Gillies PJ,
    2. Bhatia SK,
    3. Belcher LA,
    4. Hannon DB,
    5. Thompson GT,
    6. Vanden Heuvel JP.
    Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil. J Lipid Res 2012; 53: 1679–1689.
    OpenUrlAbstract/FREE Full Text
  75. 75.↵
    1. Lionetti L,
    2. Mollica MP,
    3. Donizzetti I,
    4. Gifuni G,
    5. Sica R,
    6. Pignalosa A.
    High-lard and high-fish-oil diets differ in their effects on function and dynamic behaviour of rat hepatic mitochondria. PLOS ONE 2014; 9: e92753.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. O’Mahoney LL,
    2. Matu J,
    3. Price OJ,
    4. Birch KM,
    5. Ajjan RA,
    6. Farrar D, et al.
    Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol 2018; 17: 98.
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. Jang H,
    2. Park K.
    Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin Nutr 2020; 39: 765–773.
    OpenUrl
  78. 78.↵
    1. Liu R,
    2. Chen L,
    3. Wang Y,
    4. Zhang G,
    5. Cheng Y,
    6. Feng Z, et al.
    High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. J Nutr Biochem 2020; 79: 108330.
    OpenUrl
  79. 79.↵
    1. Joseph SV,
    2. Edirisinghe I,
    3. Burton-Freeman BM.
    Fruit polyphenols: a review of anti-inflammatory effects in humans. Crit Rev Food Sci Nutr 2016; 56: 419–444.
    OpenUrl
  80. 80.↵
    1. Chiva-Blanch G,
    2. Jiménez C,
    3. Pinyol M,
    4. Herreras Z,
    5. Catalán M,
    6. Martínez-Huélamo M, et al.
    5-cis-, Trans- and total lycopene plasma concentrations inversely relate to atherosclerotic plaque burden in newly diagnosed type 2 diabetes subjects. Nutrients 2020; 12: 1696.
    OpenUrl
  81. 81.↵
    1. Bose M,
    2. Lambert JD,
    3. Ju J,
    4. Reuhl KR,
    5. Shapses SA,
    6. Yang CS, et al.
    The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 2008; 138: 1677–1683.
    OpenUrlAbstract/FREE Full Text
  82. 82.↵
    1. Sae-tan S,
    2. Grove KA,
    3. Lambert JD.
    Weight control and prevention of metabolic syndrome by green tea. Pharmacol Res 2011; 64: 146–154.
    OpenUrlCrossRefPubMed
  83. 83.↵
    1. Thielecke F,
    2. Boschmann M.
    The potential role of green tea catechins in the prevention of the metabolic syndrome – A review. Phytochemistry 2009; 70: 11–24.
    OpenUrlCrossRefPubMedWeb of Science
  84. 84.↵
    1. Ahmed J,
    2. Al-Jasass FM,
    3. Siddiq M.
    Date Fruit Composition and Nutrition. In: Dates. John Wiley & Sons, Ltd 2014. p. 261–283.
  85. 85.↵
    1. Ghnimi S,
    2. Umer S,
    3. Karim A,
    4. Kamal-Eldin A.
    Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS Journal 2017; 6: 1–10.
    OpenUrl
  86. 86.↵
    1. Ahmed S,
    2. Khan RA,
    3. Jamil S,
    4. Afroz S.
    Report - Antidiabetic effects of native date fruit Aseel (Phoenix dactylifera L.) in normal and hyperglycemic rats. Pak J Pharm Sci 2017; 30: 1797–1802.
    OpenUrl
  87. 87.↵
    1. El Abed H,
    2. Chakroun M,
    3. Fendri I,
    4. Makni M,
    5. Bouaziz M,
    6. Drira N, et al.
    Extraction optimization and in vitro and in vivo anti-postprandial hyperglycemia effects of inhibitor from Phoenix dactylifera L. parthenocarpic fruit. Biomed Pharmacother 2017; 88: 835–843.
    OpenUrl
  88. 88.↵
    1. Chaari A,
    2. Abdellatif B,
    3. Nabi F,
    4. Khan RH, et al.
    Date palm (Phoenix dactylifera L.) fruit’s polyphenols as potential inhibitors for human amylin fibril formation and toxicity in type 2 diabetes. Int J Biol Macromol 2020; 164: 1794–1808.
    OpenUrl
  89. 89.↵
    1. Hasan M,
    2. Mohieldein A.
    In vivo evaluation of anti diabetic, hypolipidemic, antioxidative activities of saudi date seed extract on streptozotocin induced diabetic rats. J Clin Diagn Res 2016; 10: FF06–FF12.
    OpenUrl
  90. 90.↵
    1. Viguiliouk E,
    2. Jenkins AL,
    3. Blanco Mejia S,
    4. Sievenpiper JL,
    5. Kendall CWC
    . Effect of dried fruit on postprandial glycemia: a randomized acute-feeding trial. Nutr Diabetes 2018; 8: 59.
    OpenUrl
  91. 91.↵
    1. Ali RB,
    2. Atangwho IJ,
    3. Kuar N,
    4. Ahmad M,
    5. Mahmud R,
    6. Asmawi MZ.
    In vitro and in vivo effects of standardized extract and fractions of Phaleria macrocarpa fruits pericarp on lead carbohydrate digesting enzymes. BMC Complement Altern Med 2013; 13: 39.
    OpenUrlPubMed
  92. 92.↵
    1. Al-Alawi RA,
    2. Al-Mashiqri JH,
    3. Al-Nadabi JSM,
    4. Al-Shihi BI,
    5. Baqi Y
    . Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front Plant Sci 2017; 8: 845.
    OpenUrl
  93. 93.↵
    1. Al-Yahya M,
    2. Raish M,
    3. AlSaid MS,
    4. Ahmad A,
    5. Mothana RA,
    6. Al-Sohaibani M, et al.
    “Ajwa” dates (Phoenix dactylifera L.) extract ameliorates isoproterenol-induced cardiomyopathy through downregulation of oxidative, inflammatory and apoptotic molecules in rodent model. Phytomedicine 2016; 23: 1240–1248.
    OpenUrl
  94. 94.↵
    1. Hussein K,
    2. Raz-Pasteur A,
    3. Finkelstein R,
    4. Neuberger, Shachor-Meyouhas Y,
    5. Oren I, et al.
    Impact of carbapenem resistance on the outcome of patients’ hospital-acquired bacteraemia caused by Klebsiella pneumoniae. J Hosp Infect 2013; 83: 307–313.
    OpenUrlCrossRefPubMed
  95. 95.↵
    1. Ranneh Y,
    2. Akim AM,
    3. Hamid HA, et al.
    Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutr Metab (Lond) 2019; 16: 15.
    OpenUrl
  96. 96.↵
    1. Nemoseck TM,
    2. Carmody EG,
    3. Furchner-Evanson A,
    4. Gleason M,
    5. Li A,
    6. Potter H, et al.
    Honey promotes lower weight gain, adiposity, and triglycerides than sucrose in rats. Nutr Res 2011; 31: 55–60.
    OpenUrlPubMed
  97. 97.↵
    1. Yaghoobi N,
    2. Al-Waili N,
    3. Ghayour-Mobarhan M,
    4. Parizadeh SMR,
    5. Abasalti Z,
    6. Yaghoobi Z, et al.
    Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. ScientificWorldJournal 2008; 8: 463–469.
    OpenUrlPubMed
  98. 98.↵
    1. Romero-Silva S,
    2. R MAM,
    3. Romero-Romero LP,
    4. Rodriguez O,
    5. Salas CGG,
    6. Morel M, et al
    . Effects of honey against the accumulation of adipose tissue and the increased blood pressure on carbohydrate-induced obesity in rat. Lett Drug Des Discov 2011; 8: 69–75.
    OpenUrl
  99. 99.↵
    1. Lopes R de CSO,
    2. de Lima SLS,
    3. da Silva BP,
    4. Lopes Toledo RC,
    5. de Castro Moreira ME,
    6. Anunciação PC, et al.
    Evaluation of the health benefits of consumption of extruded tannin sorghum with unfermented probiotic milk in individuals with chronic kidney disease. Food Res Int 2018; 107: 629–638.
    OpenUrl
  100. 100.↵
    1. Cardoso L de M,
    2. Pinheiro SS,
    3. Carvalho CWP de,
    4. Queiroz VAV, de
    5. Menezes CB,
    6. Moreira AVB, et al.
    Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. J Cereal Sci 2015; 65: 220–226.
    OpenUrlCrossRef
  101. 101.↵
    1. Arbex PM,
    2. Moreira ME de C,
    3. Toledo RCL,
    4. Cardoso LDM,
    5. Pinheiro-Sant’ana HDM,
    6. Benjamin LA, et al
    . Extruded sorghum flour (Sorghum bicolor L.) modulate adiposity and inflammation in high fat diet-induced obese rats. J Funct Foods 2018; 42: 346–355.
    OpenUrl
  102. 102.↵
    1. Weickert MO,
    2. Pfeiffer AFH.
    Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. J Nutr 2008; 138: 439–442.
    OpenUrlAbstract/FREE Full Text
  103. 103.
    1. Xu J,
    2. Fu Y,
    3. Chen A.
    Activation of peroxisome proliferator-activated receptor-γ contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 2003; 285: G20–G30.
    OpenUrlCrossRefPubMedWeb of Science
  104. 104.↵
    1. Shehzad A,
    2. Khan S,
    3. Sup Lee Y.
    Curcumin molecular targets in obesity and obesity-related cancers. Future Oncol 2012; 8: 179–190.
    OpenUrlPubMed
  105. 105.↵
    1. Aggarwal BB.
    Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30: 173–199.
    OpenUrlCrossRefPubMedWeb of Science
  106. 106.↵
    1. Ziegenfuss TN,
    2. Hofheins JE,
    3. Mendel RW,
    4. Landis J,
    5. Anderson RA.
    Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J Int Soc Sports Nutr 2006; 3: 45.
    OpenUrlCrossRefPubMed
  107. 107.↵
    1. Cao H,
    2. Graves DJ,
    3. Anderson RA.
    Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes. Phytomedicine 2010; 17: 1027–1032.
    OpenUrlCrossRefPubMed
  108. 108.↵
    1. McKeown NM,
    2. Meigs JB,
    3. Liu S,
    4. Saltzman E,
    5. Wilson PWF,
    6. Jacques PF.
    Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring cohort. Diabetes Care 2004; 27: 538–546.
    OpenUrlAbstract/FREE Full Text
  109. 109.↵
    1. Sahyoun NR,
    2. Jacques PF,
    3. Zhang XL,
    4. Juan W,
    5. McKeown NM.
    Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 2006; 83: 124–131.
    OpenUrlAbstract/FREE Full Text
  110. 110.
    1. Brennan CS.
    Dietary fibre, glycaemic response, and diabetes. Mol Nutr Food Res 2005; 49: 560–570.
    OpenUrlCrossRefPubMedWeb of Science
  111. 111.↵
    1. Brown L,
    2. Rosner B,
    3. Willett WW,
    4. Sacks FM.
    Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 1999; 69: 30–42.
    OpenUrlAbstract/FREE Full Text
  112. 112.
    1. Onning G,
    2. Wallmark A,
    3. Persson M, et al.
    Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia. Ann Nutr Metab 1999; 43: 301–309.
    OpenUrlCrossRefPubMedWeb of Science
  113. 113.
    1. Anderson JW,
    2. Davidson MH,
    3. Blonde L,
    4. Brown WV,
    5. Howard WJ,
    6. Ginsberg H, et al.
    Long-term cholesterol-lowering effects of psyllium as an adjunct to diet therapy in the treatment of hypercholesterolemia. Am J Clin Nutr 2000; 71: 1433–1438.
    OpenUrlAbstract/FREE Full Text
  114. 114.↵
    1. Slavin JL.
    Dietary fiber and body weight. Nutrition 2005; 21: 411–418.
    OpenUrlCrossRefPubMedWeb of Science
  115. 115.↵
    1. Liu S,
    2. Sesso HD,
    3. Manson JE,
    4. Willett WC,
    5. Buring JE.
    Is intake of breakfast cereals related to total and cause-specific mortality in men? Am J Clin Nutr 2003; 77: 594–599.
    OpenUrlAbstract/FREE Full Text
  116. 116.
    1. Jensen MK,
    2. Koh-Banerjee P,
    3. Hu FB,
    4. Franz M,
    5. Sampson L,
    6. Grønbaek M, et al.
    Intakes of whole grains, bran, and germ and the risk of coronary heart disease in men. Am J Clin Nutr 2004; 80: 1492–1499.
    OpenUrlAbstract/FREE Full Text
  117. 117.↵
    1. Qi L,
    2. van Dam RM,
    3. Liu S. Whole-grain
    , bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 2006; 29: 207–211.
    OpenUrlAbstract/FREE Full Text
  118. 118.↵
    1. Esmaillzadeh A,
    2. Mirmiran P,
    3. Azizi F.
    Whole-grain consumption and the metabolic syndrome: a favorable association in Tehranian adults. Eur J Clin Nutr 2005; 59: 353–362.
    OpenUrlCrossRefPubMedWeb of Science
  119. 119.↵
    1. Son BK,
    2. Kim JY,
    3. Lee SS.
    Effect of adlay, buckwheat and barley on lipid metabolism and aorta histopathology in rats fed an obesogenic diet. Ann Nutr Metab 2008; 52: 181–187.
    OpenUrlPubMed
  120. 120.↵
    1. åman P
    . Cholesterol-lowering effects of barley dietary fibre in humans: scientific support for a generic health claim. S J Jadhav et al 2006; 50: 173–176.
    OpenUrl
  121. 121.↵
    1. Saini RK,
    2. Zamany AJ,
    3. Keum Y-S.
    Ripening improves the content of carotenoid, a-tocopherol, and polyunsaturated fatty acids in tomato (Solanum lycopersicum L.) fruits. 3 Biotech 2017; 7: 43.
    OpenUrl
  122. 122.↵
    1. Han G-M,
    2. Liu P.
    Higher serum lycopene is associated with reduced prevalence of hypertension in overweight or obese adults. Eur J Integr Med 2017; 13: 34–40.
    OpenUrl
  123. 123.
    1. Ghavipour M,
    2. Sotoudeh G,
    3. Ghorbani M.
    Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clin Nutr 2015; 34: 805–809.
    OpenUrl
  124. 124.
    1. Guerendiain M,
    2. Mayneris-Perxachs J,
    3. Montes R,
    4. López-Belmonte G,
    5. Martín-Matillas M,
    6. Castellote AI, et al.
    Relation between plasma antioxidant vitamin levels, adiposity and cardio-metabolic profile in adolescents: Effects of a multidisciplinary obesity programme. Clin Nutr 2017; 36: 209–217.
    OpenUrl
  125. 125.
    1. Zeng Z,
    2. He W,
    3. Jia Z,
    4. Huo S.
    Lycopene Improves Insulin Sensitivity through Inhibition of STAT3/Srebp-1c-mediated lipid accumulation and inflammation in mice fed a high-fat Diet. Exp Clin Endocrinol Diabetes 2017; 125: 610–617.
    OpenUrl
  126. 126.↵
    1. Zidani S,
    2. Benakmoum A,
    3. Ammouche A,
    4. Benali Y,
    5. Bouhadef A,
    6. Abbeddou S.
    Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets. J Nutr Biochem 2017; 40: 164–171.
    OpenUrl
  127. 127.↵
    1. Han G-M,
    2. Meza JL,
    3. Soliman GA,
    4. Monirul Islam KM,
    5. Watanabe-Galloway S.
    Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutr Res 2016; 36: 402–407.
    OpenUrlCrossRef
  128. 128.↵
    1. Padiya R,
    2. Khatua TN,
    3. Bagul PK,
    4. Kuncha M,
    5. Banerjee SK.
    Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutr Metab 2011; 8: 53.
    OpenUrl
  129. 129.↵
    1. Reinhart KM,
    2. Talati R,
    3. White CM,
    4. Coleman CI.
    The impact of garlic on lipid parameters: a systematic review and meta-analysis. Nutr Res Rev 2009; 22: 39–48.
    OpenUrlCrossRefPubMed
  130. 130.↵
    1. Gómez-Arbeláez D,
    2. Lahera V,
    3. Oubiña P,
    4. Valero-Muñoz M,
    5. de Las Heras N,
    6. Rodríguez Y, et al.
    Aged garlic extract improves adiponectin levels in subjects with metabolic syndrome: a double-blind, placebo-controlled, randomized, crossover study. Mediators Inflamm 2013; 2013: 285795.
    OpenUrl
  131. 131.↵
    1. Choudhary PR,
    2. Jani RD,
    3. Sharma MS.
    Effect of Raw Crushed Garlic (Allium sativum L.) on components of metabolic syndrome. J Diet Suppl 2018; 15: 499–506.
    OpenUrl
  132. 132.
    1. Zeb I,
    2. Ahmadi N,
    3. Flores F,
    4. Budoff MJ.
    Randomized trial evaluating the effect of aged garlic extract with supplements versus placebo on adipose tissue surrogates for coronary atherosclerosis progression. Coron Artery Dis 2018; 29: 325–328.
    OpenUrl
  133. 133.↵
    1. Ried K,
    2. Travica N,
    3. Sali A.
    The Effect of kyolic aged garlic extract on gut microbiota, inflammation, and cardiovascular markers in hypertensives: The GarGIC trial. Front Nutr 2018; 5: 122.
    OpenUrl
  134. 134.↵
    1. Ge YC,
    2. Wang KW.
    New Analogues of Aporphine Alkaloids. Mini Rev Med Chem 2018; 18: 1590–1602.
    OpenUrl
  135. 135.
    1. Okon E,
    2. Kukula-Koch W,
    3. Jarzab A,
    4. Marta Halasa, Stepulak A,
    5. Wawruszak A.
    Advances in chemistry and bioactivity of magnoflorine and magnoflorine-containing extracts. Int J Mol Sci 2020; 21: 1330.
    OpenUrl
  136. 136.↵
    1. Lin CJ,
    2. Chen CH,
    3. Liu FW,
    4. Kang JJ,
    5. Chen CK,
    6. Lee SL, et al.
    Inhibition of intestinal glucose uptake by aporphines and secoaporphines. Life Sci 2006; 79: 144–153.
    OpenUrlPubMed
  137. 137.
    1. Al-Waili NS.
    Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. J Med Food 2004; 7: 100–107.
    OpenUrlPubMed
  138. 138.↵
    1. Yang J,
    2. Yin J,
    3. Gao H,
    4. Xu L,
    5. Wang Y,
    6. Xu L, et al.
    Berberine Improves Insulin Sensitivity by Inhibiting Fat Store and Adjusting Adipokines Profile in Human Preadipocytes and Metabolic Syndrome Patients. Evid Based Complement Alternat Med 2012; 2012: e363845.
    OpenUrl
  139. 139.↵
    1. Lee YS,
    2. Kim WS,
    3. Kim KH,
    4. Yoon MJ,
    5. Cho HJ,
    6. Shen Y, et al.
    Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006; 55: 2256–2264.
    OpenUrlAbstract/FREE Full Text
  140. 140.↵
    1. Pérez-Rubio KG,
    2. González-Ortiz M,
    3. Martínez-Abundis E,
    4. Robles-Cervantes JA,
    5. Espinel-Bermúdez MC.
    Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab Syndr Relat Disord 2013; 11: 366–369.
    OpenUrl
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 44 (10)
Saudi Medical Journal
Vol. 44, Issue 10
1 Oct 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Understanding the prevalence, progression, and management of metabolic syndrome in Saudi Arabia
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Understanding the prevalence, progression, and management of metabolic syndrome in Saudi Arabia
Faez Falah Alshehri
Saudi Medical Journal Oct 2023, 44 (10) 973-986; DOI: 10.15537/smj.2023.44.10.20230450

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Understanding the prevalence, progression, and management of metabolic syndrome in Saudi Arabia
Faez Falah Alshehri
Saudi Medical Journal Oct 2023, 44 (10) 973-986; DOI: 10.15537/smj.2023.44.10.20230450
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Ajwa date extract (Phoenix dactylifera L.): Phytochemical analysis, antiviral activity against herpes simplex virus-I and coxsackie B4 virus, and in silico study
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • metabolic syndrome (MetS)
  • hypertension
  • insulin resistance
  • diabetes
  • obesity
  • phytochemicals

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire