Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy

Hajir A. Al Saihati and Ali A. Rabaan
Saudi Medical Journal April 2023, 44 (4) 329-344; DOI: https://doi.org/10.15537/smj.2023.44.4.20220600
Hajir A. Al Saihati
From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Ali A. Rabaan
From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Emran TB,
    2. Shahriar A,
    3. Mahmud AR,
    4. Rahman T,
    5. Abir MH,
    6. Siddiquee MF, et al.
    Multidrug resistance in cancer: understanding molecular Mmechanisms, immunoprevention, and therapeutic approaches. Front Oncol 2022; 12: 891652.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Dallavalle S,
    2. Dobričić V,
    3. Lazzarato L,
    4. Gazzano E,
    5. Machuqueiro M,
    6. Pajeva I, et al.
    Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50: 100682.
    OpenUrl
  3. 3.↵
    1. Zhong L,
    2. Li Y,
    3. Xiong L,
    4. Wang W,
    5. Wu M,
    6. Yuan T, et al.
    Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6: 201.
    OpenUrl
  4. 4.↵
    1. Mesci S,
    2. Marakli S,
    3. Yazgan B,
    4. Yildirim T.
    The effect of ATP-binding cassette (ABC) transporters in human cancers. Int J Sci Lett 2019; 1: 1–14.
    OpenUrl
  5. 5.↵
    1. Wu CP,
    2. Hsiao SH,
    3. Huang YH,
    4. Hung LC,
    5. Yu YJ,
    6. Chang YT, et al.
    Sitravatinib sensitizes ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Cancers (Basel) 2020; 12: 195.
    OpenUrl
  6. 6.↵
    1. Vaidyanathan A,
    2. Sawers L,
    3. Gannon AL,
    4. Chakravarty P,
    5. Scott AL,
    6. Bray SE, et al.
    ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer 2016; 115: 431–441.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Souza PS,
    2. Madigan JP,
    3. Gillet JP,
    4. Kapoor K,
    5. Ambudkar SV,
    6. Maia RC, et al.
    Expression of the multidrug transporter P-glycoprotein is inversely related to that of apoptosis-associated endogenous TRAIL. Exp Cell Res 2015; 336: 318–328.
    OpenUrl
  8. 8.↵
    1. Nanayakkara AK,
    2. Follit CA,
    3. Chen G,
    4. Williams NS,
    5. Vogel PD,
    6. Wise JG.
    Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 2018; 8: 967.
    OpenUrl
  9. 9.↵
    1. Guberović I,
    2. Marjanović M,
    3. Mioč M,
    4. Ester K,
    5. Martin-Kleiner I,
    6. Šumanovac Ramljak T, et al.
    Crown ethers reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Sci Rep 2018; 8: 14467.
    OpenUrlCrossRef
  10. 10.↵
    1. Liu Y,
    2. Zhang L,
    3. Ma Z,
    4. Tian L,
    5. Liu Y,
    6. Liu Y, et al.
    Ascorbate promotes the cellular accumulation of doxorubicin and reverses the multidrug resistance in breast cancer cells by inducing ROS-dependent ATP depletion. Free Radic Res 2019; 53: 758–767.
    OpenUrl
  11. 11.↵
    1. Zhou XW,
    2. Xia YZ,
    3. Zhang YL,
    4. Luo JG,
    5. Han C,
    6. Zhang H, et al.
    Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget 2017; 8: 101965–101983.
    OpenUrl
  12. 12.↵
    1. Yuan Z,
    2. Shi X,
    3. Qiu Y,
    4. Jia T,
    5. Yuan X,
    6. Zou Y, et al.
    Reversal of P-gp-mediated multidrug resistance in colon cancer by cinobufagin. Oncol Rep 2017; 37: 1815–1825.
    OpenUrl
  13. 13.↵
    1. Chen HJ,
    2. Chung YL,
    3. Li CY,
    4. Chang YT,
    5. Wang CCN,
    6. Lee HY, et al.
    Taxifolin resensitizes multidrug resistance cancer cells via uncompetitive inhibition of P-glycoprotein function. Molecules 2018; 23: 3055.
    OpenUrl
  14. 14.
    1. Snyder S.,
    2. Murundi S.,
    3. Crawford L., et al.
    Enabling P-glycoprotein inhibition in multidrug resistant cancer through the reverse targeting of a quinidine-PEG conjugate. J Controlled Release 2020; 317: 291–299.
    OpenUrl
  15. 15.↵
    1. Fu J,
    2. Li T,
    3. Yang Y,
    4. Jiang L,
    5. Wang W,
    6. Fu L, et al.
    Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials 2021; 268: 120537.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Salama B,
    2. El-Sherbini ES,
    3. El-Sayed G,
    4. El-Adl M,
    5. Kanehira K,
    6. Taniguchi A.
    The effects of TiO2 nanoparticles on cisplatin cytotoxicity in cancer cell lines. Int J Mol Sci 2020; 21: 605.
    OpenUrl
  17. 17.↵
    1. Mantovani F,
    2. Collavin L,
    3. Del Sal G.
    Mutant p53 as a guardian of the cancer cell. Cell Death Differ 2019; 26: 199–212.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Chandrasekhar C,
    2. Kumar PS,
    3. Sarma PVGK.
    Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci Rep 2019; 9: 2412.
    OpenUrl
  19. 19.↵
    1. Zhao Z,
    2. Shilatifard A.
    Epigenetic modifications of histones in cancer. Genome Biol 2019; 20: 245.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Ham IH,
    2. Oh HJ,
    3. Jin H,
    4. Bae CA,
    5. Jeon SM,
    6. Choi KS, et al.
    Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer 2019; 18: 68.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Jimenez-Pascual A,
    2. Siebzehnrubl FA.
    Fibroblast growth factor receptor functions in glioblastoma. Cells 2019; 8: 715.
    OpenUrlCrossRef
  22. 22.↵
    1. Jena MK,
    2. Janjanam J.
    Role of extracellular matrix in breast cancer development: a brief update. F1000Res 2018; 7: 274.
    OpenUrl
  23. 23.↵
    1. Gentile F,
    2. Elmenoufy AH,
    3. Ciniero G,
    4. Jay D,
    5. Karimi-Busheri F,
    6. Barakat KH, et al.
    Computer-aided drug design of small molecule inhibitors of the ERCC1-XPF protein-protein interaction. Chem Biol Drug Des 2020; 95: 460–471.
    OpenUrl
  24. 24.↵
    1. Rocha CRR,
    2. Silva MM,
    3. Quinet A,
    4. Cabral-Neto JB,
    5. Menck CFM.
    DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo) 2018; 73: e478s.
    OpenUrl
  25. 25.
    1. McNeil EM,
    2. Astell KR,
    3. Ritchie AM,
    4. Shave S,
    5. Houston DR,
    6. Bakrania P, et al.
    Inhibition of the ERCC1-XPF structure-specific endonuclease to overcome cancer chemoresistance. DNA Repair (Amst) 2015; 31: 19–28.
    OpenUrl
  26. 26.↵
    1. Pawelczak KS
    1. Vernon TL
    1. Jordan MR
    1. Turchi JJ
    1. Gavande NS,
    2. VanderVere-Carozza PS
    , Pawelczak KS, Vernon TL, Jordan MR, Turchi JJ. Structure-guided optimization of replication protein A (RPA)-DNA interaction inhibitors. ACS Med Chem Lett 2020; 11: 1118–1124.
    OpenUrl
  27. 27.↵
    1. Mishra AK,
    2. Dormi SS,
    3. Turchi AM,
    4. Woods DS,
    5. Turchi JJ.
    Chemical inhibitor targeting the replication protein A-DNA interaction increases the efficacy of Pt-based chemotherapy in lung and ovarian cancer. Biochem Pharmacol 2015; 93: 25–33.
    OpenUrl
  28. 28.↵
    1. Vendetti FP,
    2. Lau A,
    3. Schamus S,
    4. Conrads TP,
    5. O’Connor MJ,
    6. Bakkenist CJ.
    The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 2015; 6: 44289–44305.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Fok JHL,
    2. Ramos-Montoya A,
    3. Vazquez-Chantada M,
    4. Wijnhoven PWG,
    5. Follia V,
    6. James N, et al.
    AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat Commun 2019; 10: 5065.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Albarakati N,
    2. Abdel-Fatah TM,
    3. Doherty R,
    4. Russell R,
    5. Agarwal D,
    6. Moseley P, et al.
    Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol 2015; 9: 204–217.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Wojtaszek JL,
    2. Chatterjee N,
    3. Najeeb J,
    4. Ramos A,
    5. Lee M,
    6. Bian K, et al.
    A small molecule targeting mutagenic translesion synthesis improves chemotherapy. Cell 2019; 178: 152–159.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Yamanaka K,
    2. Chatterjee N,
    3. Hemann MT,
    4. Walker GC.
    Inhibition of mutagenic translesion synthesis: a possible strategy for improving chemotherapy? PLoS Genet 2017; 13: e1006842.
    OpenUrl
  33. 33.↵
    1. Sail V,
    2. Rizzo AA,
    3. Chatterjee N,
    4. Dash RC,
    5. Ozen Z,
    6. Walker GC, et al.
    Identification of small molecule translesion synthesis inhibitors that target the Rev1-CT/RIR protein-protein interaction. ACS Chem Biol 2017; 12: 1903–1912.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Gioia U,
    2. Francia S,
    3. Cabrini M,
    4. Brambillasca S,
    5. Michelini F,
    6. Jones-Weinert CW, et al.
    Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Sci Rep 2019; 9: 6460.
    OpenUrl
  35. 35.↵
    1. Pathania S,
    2. Bhatia R,
    3. Baldi A,
    4. Singh R,
    5. Rawal RK.
    Drug metabolizing enzymes and their inhibitors’ role in cancer resistance. Biomed Pharmacother 2018; 105: 53–65.
    OpenUrl
  36. 36.↵
    1. Li Y,
    2. Steppi A,
    3. Zhou Y,
    4. Mao F,
    5. Miller PC,
    6. He MM, et al.
    Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine. Sci Rep 2017; 7: 4747.
    OpenUrl
  37. 37.↵
    1. Osborne MJ,
    2. Coutinho de Oliveira L,
    3. Volpon L,
    4. Zahreddine HA,
    5. Borden KLB.
    Overcoming drug resistance through the development of selective inhibitors of UDP-glucuronosyltransferase enzymes. J Mol Biol 2019; 431: 258–272.
    OpenUrl
  38. 38.↵
    1. Özaslan MS,
    2. Demir Y,
    3. Aslan HE,
    4. Beydemir Ş,
    5. Küfrevioğlu Öİ.
    Evaluation of chalcones as inhibitors of glutathione S-transferase. J Biochem Mol Toxicol 2018; 32: e22047.
    OpenUrl
  39. 39.↵
    1. Wang F,
    2. Xu H,
    3. Yan Y,
    4. Wu P,
    5. Wu J,
    6. Zhu X, et al.
    FBX8 degrades GSTP1 through ubiquitination to suppress colorectal cancer progression. Cell Death Dis 2019; 10: 351.
    OpenUrl
  40. 40.↵
    1. Lv H,
    2. Zhen C,
    3. Liu J,
    4. Yang P,
    5. Hu L,
    6. Shang P.
    Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev 2019; 2019: 3150145.
    OpenUrl
  41. 41.↵
    1. Desideri E,
    2. Ciccarone F,
    3. Ciriolo MR.
    Targeting glutathione metabolism: partner in crime in anti-cancer therapy. Nutrients 2019; 11: 1926.
    OpenUrl
  42. 42.↵
    1. Ogiwara H,
    2. Takahashi K,
    3. Sasaki M,
    4. Kuroda T,
    5. Yoshida H,
    6. Watanabe R, et al.
    Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers. Cancer Cell 2019; 35: 177–190.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Peng X,
    2. Li L,
    3. Ren Y,
    4. Xue H,
    5. Liu J,
    6. Wen S, et al.
    Synthesis of N-carbonyl acridanes as highly potent inhibitors of tubulin polymerization via one-pot copper-catalyzed dual arylation of nitriles with cyclic diphenyl iodoniums. Adv Synth Catal 2020; 362: 2030–2038.
    OpenUrl
  44. 44.↵
    1. Alkema NG,
    2. Wisman GB,
    3. van der Zee AG,
    4. van Vugt MA,
    5. de Jong S.
    Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: different models for different questions. Drug Resist Updat 2016; 24: 55–69.
    OpenUrl
  45. 45.↵
    1. Planells-Cases R,
    2. Lutter D,
    3. Guyader C,
    4. Gerhards NM,
    5. Ullrich F,
    6. Elger DA, et al.
    Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 2015; 34: 2993–3008.
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. Hung CC,
    2. Chien CY,
    3. Chiang WF,
    4. Lin CS,
    5. Hour TC,
    6. Chen HR, et al.
    p22phox confers resistance to cisplatin, by blocking its entry into the nucleus. Oncotarget 2015; 6: 4110–4125.
    OpenUrl
  47. 47.↵
    1. Wu DW,
    2. Lee MC,
    3. Hsu NY,
    4. Wu TC,
    5. Wu JY,
    6. Wang YC, et al.
    FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/slug-mediated PUMA reduction. Oncogene 2015; 34: 2505–2515.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Bax BD,
    2. Murshudov G,
    3. Maxwell A,
    4. Germe T.
    DNA topoisomerase inhibitors: trapping a DNA-cleaving machine in motion. J Mol Biol 2019; 431: 3427–3449.
    OpenUrl
  49. 49.↵
    1. Pang B,
    2. de Jong J,
    3. Qiao X,
    4. Wessels LF,
    5. Neefjes J.
    Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat Chem Biol 2015; 11: 472–480.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Xu Y,
    2. Her C.
    Inhibition of topoisomerase (DNA) I (TOP1): DNA damage repair and anti-cancer therapy. Biomolecules 2015; 5: 1652–1670.
    OpenUrl
  51. 51.↵
    1. Meisenberg C,
    2. Gilbert DC,
    3. Chalmers A,
    4. Haley V,
    5. Gollins S,
    6. Ward SE, et al.
    Clinical and cellular roles for TDP1 and TOP1 in modulating colorectal cancer response to irinotecan. Mol Cancer Ther 2015; 14: 575–585.
    OpenUrlAbstract/FREE Full Text
  52. 52.↵
    1. Wijdeven RH,
    2. Pang B,
    3. van der Zanden SY,
    4. Qiao X,
    5. Blomen V,
    6. Hoogstraat M, et al.
    Genome-Wide identification and characterization of novel factors conferring resistance to topoisomerase II poisons in cancer. Cancer Res 2015; 75: 4176–4187.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Kathawala RJ,
    2. Gupta P,
    3. Ashby CR Jr.,
    4. Chen ZS.
    The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2015; 18: 1–17.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Zhitomirsky B,
    2. Assaraf YG.
    Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24: 23–33.
    OpenUrlCrossRef
  55. 55.
    1. Kim KH,
    2. Roberts CW.
    Targeting EZH2 in cancer. Nat Med 2016; 22: 128–134.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Onizuka K,
    2. Hazemi ME,
    3. Sato N,
    4. Tsuji GI,
    5. Ishikawa S,
    6. Ozawa M, et al.
    Reactive OFF-ON type alkylating agents for higher-ordered structures of nucleic acids. Nucleic Acids Res 2019; 47: 6578–6589.
    OpenUrl
  57. 57.↵
    1. Taddia L,
    2. D’Arca D,
    3. Ferrari S,
    4. Marraccini C,
    5. Severi L,
    6. Ponterini G, et al.
    Inside the biochemical pathways of thymidylate synthase perturbed by anti-cancer drugs: novel strategies to overcome cancer chemoresistance. Drug Resist Updat 2015; 23: 20–54.
    OpenUrl
  58. 58.
    1. Jabeen S,
    2. Holmboe L,
    3. Alnæs GI,
    4. Andersen AM,
    5. Hall KS,
    6. Kristensen VN.
    Impact of genetic variants of RFC1, DHFR, and MTHFR in osteosarcoma patients treated with high-dose methotrexate. Pharmacogenomics J 2015; 15: 385–390.
    OpenUrl
  59. 59.↵
    1. Wojtuszkiewicz A,
    2. Raz S,
    3. Stark M,
    4. Assaraf YG,
    5. Jansen G,
    6. Peters GJ, et al.
    Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance. Int J Cancer 2016; 138: 1645–1656.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Wojtuszkiewicz A,
    2. Peters GJ,
    3. van Woerden NL,
    4. Dubbelman B,
    5. Escherich G,
    6. Schmiegelow K, et al.
    Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia. J Hematol Oncol 2015; 8: 61.
    OpenUrlCrossRefPubMed
  61. 61.↵
    1. Pastor-Anglada M,
    2. Pérez-Torras S.
    Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 2015; 6: 13.
    OpenUrlCrossRefPubMed
  62. 62.↵
    1. Serdjebi C,
    2. Milano G,
    3. Ciccolini J.
    Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin Drug Metab Toxicol 2015; 11: 665–672.
    OpenUrlCrossRefPubMed
  63. 63.↵
    1. Binenbaum Y,
    2. Na’ara S,
    3. Gil Z.
    Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 2015; 23: 55–68.
    OpenUrlCrossRef
  64. 64.↵
    1. Mlak R,
    2. Krawczyk P,
    3. Ciesielka M,
    4. Kozioł P,
    5. Homa I,
    6. Powrózek T, et al.
    The relationship between RRM1 gene polymorphisms and effectiveness of gemcitabine-based first-line chemotherapy in advanced NSCLC patient. Clin Transl Oncol 2016; 18: 915–924.
    OpenUrl
  65. 65.↵
    1. van Vuuren RJ,
    2. Visagie MH,
    3. Theron AE,
    4. Joubert AM.
    Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol 2015; 76: 1101–1112.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Bonneau C,
    2. Gurard-Levin ZA,
    3. Andre F,
    4. Pusztai L,
    5. Rouzier R.
    Predictive and prognostic value of the TauProtein in breast cancer. Anti-cancer Res 2015; 35: 5: 179–5184.
    OpenUrl
  67. 67.↵
    1. Yu Y,
    2. Gaillard S,
    3. Phillip JM,
    4. Huang TC,
    5. Pinto SM,
    6. Tessarollo NG, et al.
    Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell 2015; 28: 82–96.
    OpenUrlCrossRefPubMed
  68. 68.↵
    1. Xu H,
    2. Dephoure N,
    3. Sun H,
    4. Zhang H,
    5. Fan F,
    6. Liu J, et al.
    Proteomic profiling of paclitaxel treated cells identifies a novel mechanism of drug resistance mediated by PDCD4. J Proteome Res 2015; 14: 2480–2491.
    OpenUrl
  69. 69.↵
    1. Schramm A,
    2. De Gregorio N,
    3. Widschwendter P,
    4. Fink V,
    5. Huober J.
    Targeted therapies in HER2-positive breast cancer - a systematic review. Breast Care (Basel) 2015; 10: 173–178.
    OpenUrl
  70. 70.↵
    1. Wijdeven RH,
    2. Pang B,
    3. Assaraf YG,
    4. Neefjes J.
    Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist Updat 2016; 28: 65–81.
    OpenUrl
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 44 (4)
Saudi Medical Journal
Vol. 44, Issue 4
1 Apr 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy
Hajir A. Al Saihati, Ali A. Rabaan
Saudi Medical Journal Apr 2023, 44 (4) 329-344; DOI: 10.15537/smj.2023.44.4.20220600

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy
Hajir A. Al Saihati, Ali A. Rabaan
Saudi Medical Journal Apr 2023, 44 (4) 329-344; DOI: 10.15537/smj.2023.44.4.20220600
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • cancer
  • chemotherapy
  • chemoresistant

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire