Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
  • Log out
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Molecular pathology of colorectal cancer

The Saudi situation in perspective

Abdulaziz Alfahed
Saudi Medical Journal September 2023, 44 (9) 836-847; DOI: https://doi.org/10.15537/smj.2023.44.9.20230257
Abdulaziz Alfahed
From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Abdulaziz Alfahed
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Sung H,
    2. Ferlay J,
    3. Siegel RL,
    4. Laversanne M,
    5. Soerjomataram I,
    6. Jemal A, et al.
    Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209–249.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Ferlay J,
    2. Colombet M,
    3. Soerjomataram I,
    4. Parkin DM,
    5. Piñeros M,
    6. Znaor A, et al.
    Cancer statistics for the year 2020: an overview. Int J Cancer 2021.
  3. 3.↵
    1. Alqahtani WS,
    2. Almufareh NA,
    3. Domiaty DM,
    4. Albasher G,
    5. Alduwish MA,
    6. Alkhalaf H, et al.
    Epidemiology of cancer in Saudi Arabia thru 2010-2019: a systematic review with constrained meta-analysis. AIMS Public Health 2020; 7: 679–696.
    OpenUrl
  4. 4.
    1. Alyabsi M,
    2. Alhumaid A,
    3. Allah-Bakhsh H,
    4. Alkelya M,
    5. Aziz MA.
    Colorectal cancer in Saudi Arabia as the proof-of-principle model for implementing strategies of predictive, preventive, and personalized medicine in healthcare. EPMA J 2019; 11: 119–131.
    OpenUrl
  5. 5.
    1. Aziz MA,
    2. Allah-Bakhsh H.
    Colorectal cancer: a looming threat, opportunities, and challenges for the Saudi population and its healthcare system. Saudi J Gastroenterol 2018; 24: 196–197.
    OpenUrl
  6. 6.↵
    1. Alyabsi M,
    2. Algarni M,
    3. Alshammari K.
    Trends in colorectal cancer incidence rates in Saudi Arabia (2001-2016) using Saudi national registry: early- versus late-onset disease. Front Oncol 2021; 11: 730689.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Mehta S,
    2. Shelling A,
    3. Muthukaruppan A,
    4. Lasham A,
    5. Blenkiron C,
    6. Laking G, et al.
    Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2010; 2: 125–148.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Sarhadi VK,
    2. Armengol G.
    Molecular biomarkers in cancer. Biomolecules 2022; 12: 1021.
    OpenUrl
  9. 9.↵
    1. Kumar V,
    2. Abbas A,
    3. Aster JC.
    Robbins and Cotran pathologic basis of disease (Robbins pathology) 9th Edition. [Updated 2015; accessed 2023 Mar 18]. Available from: https://www.amazon.com/Robbins-Cotran-Pathologic-Disease-Pathology/dp/1455726133
  10. 10.↵
    1. Gonzalez RS,
    2. Washington K,
    3. Shi C.
    Current applications of molecular pathology in colorectal carcinoma. Applied Cancer Research 2017; 37: 13.
    OpenUrl
  11. 11.↵
    1. Yamagishi H,
    2. Kuroda H,
    3. Imai Y,
    4. Hiraishi H.
    Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer 2016; 35: 4.
    OpenUrl
  12. 12.
    1. Armelao F,
    2. de Pretis G.
    Familial colorectal cancer: a review. World J Gastroenterol 2014; 20: 9292–9298.
    OpenUrlPubMed
  13. 13.↵
    1. Talseth-Palmer BA.
    The genetic basis of colonic adenomatous polyposis syndromes. Hered Cancer Clin Pract 2017; 15: 5.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Stoffel EM,
    2. Kastrinos F.
    Familial colorectal cancer, beyond Lynch syndrome. Clin Gastroenterol Hepatol 2014; 12: 1059–1068.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Snowsill T,
    2. Coelho H,
    3. Huxley N,
    4. Jones-Hughes T,
    5. Briscoe S,
    6. Frayling I, et al.
    Molecular testing for Lynch syndrome in people with colorectal cancer. [Updated 2017; accessed 2023 Mar 18]. Available from: https://www.nice.org.uk/guidance/dg27/documents/diagnostics-assessment-report
  16. 16.↵
    1. de Paula AE,
    2. Galvão HCR,
    3. Bonatelli M,
    4. Sabato C,
    5. Fernandes GC,
    6. Berardinelli GN, et al.
    Clinicopathological and molecular characterization of Brazilian families at risk for Lynch syndrome. Cancer Genet 2021; 254-255: 82–91.
    OpenUrl
  17. 17.↵
    1. Dominguez-Valentin M,
    2. Sampson JR,
    3. Seppälä TT,
    4. Ten Broeke SW,
    5. Plazzer JP,
    6. Nakken S, et al.
    Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective Lynch syndrome database. Genet Med 2020; 22: 15–25.
    OpenUrlCrossRefPubMed
  18. 18.↵
    National Comprehensive Cancer Network. Clinical practice guidelines in oncology: colorectal cancer screening. [Updated 2020; accessed 2023 Mar 18]. Available from: http://www.nccn.org/professionals/physician_gls/pdf/colorectal_screening.pdf
  19. 19.↵
    1. Siraj AK,
    2. Masoodi T,
    3. Bu R,
    4. Parvathareddy SK,
    5. Siraj S,
    6. Alassiri A, et al.
    The study of Lynch syndrome in a special population reveals a strong founder effect and an unusual mutational mechanism in familial adenomatous polyposis. Gut 2020; 69: 2048–2049.
    OpenUrlFREE Full Text
  20. 20.↵
    1. Siraj AK,
    2. Prabhakaran S,
    3. Bavi P,
    4. Bu R,
    5. Beg S,
    6. Hazmi MA, et al.
    Prevalence of Lynch syndrome in a Middle Eastern population with colorectal cancer. Cancer 2015; 121: 1762–1771.
    OpenUrl
  21. 21.↵
    1. Alqahtani M,
    2. Edwards C,
    3. Buzzacott N,
    4. Carpenter K,
    5. Alsaleh K,
    6. Alsheikh A, et al.
    Screening for Lynch syndrome in young Saudi colorectal cancer patients using microsatellite instability testing and next generation sequencing. Fam Cancer 2018; 17: 197–203.
    OpenUrl
  22. 22.↵
    1. Oberg JA,
    2. Glade Bender JL,
    3. Sulis ML,
    4. Pendrick D,
    5. Sireci AN,
    6. Hsiao SJ, et al.
    Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med 2016; 8: 133.
    OpenUrl
  23. 23.↵
    1. Marks LJ,
    2. Oberg JA,
    3. Pendrick D,
    4. Sireci AN,
    5. Glasser C,
    6. Coval C, et al.
    Precision medicine in children and young adults with hematologic malignancies and blood disorders: the Columbia University experience. Front Pediatr 2017; 5: 265.
    OpenUrl
  24. 24.↵
    1. Rasool M,
    2. Pushparaj PN,
    3. Mirza Z,
    4. Imran Naseer M,
    5. Abusamra H,
    6. Alquaiti M, et al.
    Array comparative genomic hybridization based identification of key genetic alterations at 2p21-p16.3 (MSH2, MSH6, and EPCAM), 3p23-p14.2 (MLH1), 7p22.1 (PMS2), and 1p34.1-p33 (MUTYH) regions in hereditary non polyposis colorectal cancer (Lynch syndrome) in the Kingdom of Saudi Arabia. Saudi J Biol Sci 2020; 27: 157–162.
    OpenUrl
  25. 25.↵
    1. Al-Sanea N,
    2. Alfaifi J,
    3. Homoud SA,
    4. Abduljabbar A,
    5. Hibbert D,
    6. Ashari L.
    Outcome after ileal pouch-anal anastomosis for familial adenomatous polyposis compared to mucosal ulcerative colitis in a Middle Eastern population. Ann Saudi Med 2013; 33: 268–272.
    OpenUrl
  26. 26.↵
    1. Alwahbi OA,
    2. Abduljabbar AS,
    3. Anwer LA.
    Cancer in an unexpected site post pouch surgery for familial adenomatous polyposis (FAP). Int J Surg Case Rep 2018; 42: 266–268.
    OpenUrl
  27. 27.↵
    1. Monies D,
    2. Abouelhoda M,
    3. Assoum M,
    4. Moghrabi N,
    5. Rafiullah R,
    6. Almontashiri N, et al.
    Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 2019; 104: 1182–1201.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Adam R,
    2. Spier I,
    3. Zhao B,
    4. Kloth M,
    5. Marquez J,
    6. Hinrichsen I, et al.
    Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet 2016; 99: 337–351.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Peters U,
    2. Jiao S,
    3. Schumacher FR,
    4. Hutter CM,
    5. Aragaki AK,
    6. Baron JA, et al.
    Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology 2013; 144: 799–807.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.
    1. Abulí A,
    2. Bessa X,
    3. González JR,
    4. Ruiz-Ponte C,
    5. Cáceres A,
    6. Muñoz J, et al.
    Susceptibility genetic variants associated with colorectal cancer risk correlate with cancer phenotype. Gastroenterology 2010; 139: 788–96, 796.e1–6.
    OpenUrlCrossRefPubMed
  31. 31.
    1. Haiman CA,
    2. Le Marchand L,
    3. Yamamato J,
    4. Stram DO,
    5. Sheng X,
    6. Kolonel LN, et al.
    A common genetic risk factor for colorectal and prostate cancer. Nat Genet 2007; 39: 954–956.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.
    1. Tenesa A,
    2. Farrington SM,
    3. Prendergast JG,
    4. Porteous ME,
    5. Walker M,
    6. Haq N, et al.
    Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 2008; 40: 631–637.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.
    1. Zanke BW,
    2. Greenwood CM,
    3. Rangrej J,
    4. Kustra R,
    5. Tenesa A,
    6. Farrington SM, et al.
    Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 2007; 39: 989–994.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.
    1. Tomlinson IP,
    2. Webb E,
    3. Carvajal-Carmona L,
    4. Broderick P,
    5. Howarth K,
    6. Pittman AM, et al.
    A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 2008; 40: 623–630.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.
    1. Jaeger E,
    2. Webb E,
    3. Howarth K,
    4. Carvajal-Carmona L,
    5. Rowan A,
    6. Broderick P, et al.
    Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 2008; 40: 26–28.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Broderick P,
    2. Carvajal-Carmona L,
    3. Pittman AM,
    4. Webb E,
    5. Howarth K,
    6. Rowan A, et al.
    A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 2007; 39: 1315–1317.
    OpenUrlCrossRefPubMed
  37. 37.
    1. Zhang K,
    2. Civan J,
    3. Mukherjee S,
    4. Patel F,
    5. Yang H.
    Genetic variations in colorectal cancer risk and clinical outcome. World J Gastroenterol 2014; 20: 4167–4177.
    OpenUrlPubMed
  38. 38.↵
    1. Xu Y,
    2. Li C,
    3. Zhang Y,
    4. Guo T,
    5. Zhu C,
    6. Xu Y, et al.
    Comparison between familial colorectal cancer type X and Lynch syndrome: molecular, clinical, and pathological characteristics and pedigrees. Front Oncol 2020; 10: 1603.
    OpenUrl
  39. 39.↵
    1. Younis NS,
    2. AlMasoud ES,
    3. Al Khawajah F,
    4. Alghazal FJ,
    5. AlMofarfesh HM,
    6. Al-Khalaf LH, et al.
    Potential genetic biomarker of Saudi Arabian patients with colorectal cancer. Eur Rev Med Pharmacol Sci 2022; 26: 3109–3126.
    OpenUrl
  40. 40.↵
    1. Abdulkhaleq MM,
    2. Al-Ghafari AB,
    3. Yezerski A,
    4. Al Doghaither HA,
    5. Abusanad AM,
    6. Omar UM.
    Novel association between heterozygous genotype of single nucleotide polymorphism C218T in drug transporter ABCC1 gene and increased risk of colon cancer. Saudi Med J 2019; 40: 224–229.
    OpenUrlAbstract/FREE Full Text
  41. 41.↵
    1. Al-Harithy RN,
    2. Al-Zahrani MH.
    The adiponectin gene, ADIPOQ, and genetic susceptibility to colon cancer. Oncol Lett 2012; 3: 176–180.
    OpenUrlPubMed
  42. 42.
    1. Saeed HM,
    2. Alanazi MS,
    3. Nounou HA,
    4. Salaby MA,
    5. Semlali A,
    6. Azzam N, et al.
    Cytochrome P450 1A1, 2E1, and GSTM1 gene polymorphisms and susceptibility to colorectal cancer in the Saudi population. Asian Pac J Cancer Prev 2013; 14: 3761–3768.
    OpenUrl
  43. 43.
    1. Sindi IA,
    2. Babalghith AO,
    3. Tayeb MT,
    4. Mufti AH,
    5. Naffadi H,
    6. Ekram SN, et al.
    Risk of colorectal carcinoma may predispose to the genetic variants of the GST, CYP450, and TP53 genes among nonsmokers in the Saudi community. Int J Gen Med 2021; 14: 1311–1323.
    OpenUrl
  44. 44.
    1. Al Omar SY,
    2. Mansour L,
    3. Dar JA,
    4. Alwasel S,
    5. Alkhuriji A,
    6. Arafah M, et al.
    The relationship between killer cell immunoglobulin-like receptors and HLA-C polymorphisms in colorectal cancer in a Saudi population. Genet Test Mol Biomarkers 2015; 19: 617–622.
    OpenUrl
  45. 45.
    1. Al Obeed OA,
    2. Vaali-Mohamed MA,
    3. Alkhayal KA,
    4. Bin Traiki TA,
    5. Zubaidi AM,
    6. Arafah M, et al.
    IL-17 and colorectal cancer risk in the Middle East: gene polymorphisms and expression. Cancer Manag Res 2018; 10: 2653–2661.
    OpenUrlCrossRef
  46. 46.
    1. Alanazi IO,
    2. Shaik JP,
    3. Parine NR,
    4. Al Naeem A,
    5. Azzam NA,
    6. Almadi MA, et al.
    NOTCH single nucleotide polymorphisms in the predisposition of breast and colorectal cancers in Saudi patients. Pathol Oncol Res 2021; 27: 616204.
    OpenUrl
  47. 47.
    1. Alshammari AH,
    2. Shalaby MA,
    3. Alanazi MS,
    4. Saeed HM.
    Novel mutations of the PARP-1 gene associated with colorectal cancer in the Saudi population. Asian Pac J Cancer Prev 2014; 15: 3667–3673.
    OpenUrl
  48. 48.
    1. AlMutairi M,
    2. Parine NR,
    3. Shaik JP,
    4. Aldhaian S,
    5. Azzam NA,
    6. Aljebreen AM, et al.
    Association between polymorphisms in PRNCR1 and risk of colorectal cancer in the Saudi population. PLoS One 2019; 14: e0220931.
    OpenUrl
  49. 49.
    1. Alharithy RN.
    Polymorphisms in RETN gene and susceptibility to colon cancer in Saudi patients. Ann Saudi Med 2014; 34: 334–339.
    OpenUrl
  50. 50.↵
    1. Reddy Parine N,
    2. Alanazi IO,
    3. Shaik JP,
    4. Aldhaian S,
    5. Aljebreen AM,
    6. Alharbi O, et al.
    TDG gene polymorphisms and their possible association with colorectal cancer: a case control study. J Oncol 2019; 2019: 7091815.
    OpenUrl
  51. 51.
    1. Semlali A,
    2. Parine NR,
    3. Al Amri A,
    4. Azzi A,
    5. Arafah M,
    6. Kohailan M, et al.
    Association between TLR-9 polymorphisms and colon cancer susceptibility in Saudi Arabian female patients. Onco Targets Ther 2016; 10: 1–11.
    OpenUrl
  52. 52.
    1. Hamadien MA,
    2. Khan Z,
    3. Vaali-Mohammed MA,
    4. Zubaidi A,
    5. Al-Khayal K,
    6. McKerrow J, et al.
    Polymorphisms of tumor necrosis factor alpha in Middle Eastern population with colorectal cancer. Tumour Biol 2016; 37: 5529–5537.
    OpenUrl
  53. 53.
    1. Semlali A,
    2. Almutairi MH,
    3. Alamri A,
    4. Reddy Parine N,
    5. Arafah M,
    6. Almadi MA, et al.
    Expression and polymorphism of TSLP/TSLP receptors as potential diagnostic markers of colorectal cancer progression. Genes (Basel) 2021; 12: 1386.
    OpenUrl
  54. 54.
    1. Alkhayal KA,
    2. Awadalia ZH,
    3. Vaali-Mohammed MA,
    4. Al Obeed OA,
    5. Al Wesaimer A,
    6. Halwani R, et al.
    Association of Vitamin D receptor gene polymorphisms with colorectal cancer in a Saudi Arabian population. PLoS One 2016; 11: e0155236.
    OpenUrl
  55. 55.
    1. Al-Ghafari AB,
    2. Balamash KS,
    3. Al Doghaither HA.
    TaqI and ApaI variants of Vitamin D receptor gene increase the risk of colorectal cancer in a Saudi population. Saudi J Med Med Sci 2020; 8: 188–195.
    OpenUrl
  56. 56.↵
    1. Karam RA,
    2. Al Jiffry BO,
    3. Al Saeed M,
    4. Abd El Rahman TM,
    5. Hatem M,
    6. Amer MG.
    DNA repair genes polymorphisms and risk of colorectal cancer in Saudi patients. Arab J Gastroenterol 2016; 17: 117–120.
    OpenUrl
  57. 57.
    1. Al Qahtani AM,
    2. Al-Ghafari AB,
    3. Al Doghaither HA,
    4. Alzahrani AH,
    5. Omar UM,
    6. Rahimulddin SA.
    ABCB1 variants C3435T and T129C are not associated with colorectal cancer risk. Afr Health Sci 2019; 19: 2476–2483.
    OpenUrl
  58. 58.
    1. Parine NR,
    2. Azzam NA,
    3. Shaik J,
    4. Aljebreen AM,
    5. Alharbi O,
    6. Almadi MA, et al.
    Genetic variants in the WNT signaling pathway are protectively associated with colorectal cancer in a Saudi population. Saudi J Biol Sci 2019; 26: 286–293.
    OpenUrl
  59. 59.
    1. Al-Mukaynizi FB,
    2. Alanazi M,
    3. Al-Daihan S,
    4. Parine NR,
    5. Almadi M,
    6. Aljebreen A, et al.
    CYP19A1 gene polymorphism and colorectal cancer etiology in Saudi population: case-control study. Onco Targets Ther 2017; 10: 4559–4567.
    OpenUrl
  60. 60.
    1. Alhadheq AM,
    2. Purusottapatnam Shaik J,
    3. Alamri A,
    4. Aljebreen AM,
    5. Alharbi O,
    6. Almadi MA, et al.
    The effect of poly(ADP-ribose) polymerase-1 gene 3’untranslated region polymorphism in colorectal cancer risk among Saudi cohort. Dis Markers 2016; 2016: 8289293.
    OpenUrl
  61. 61.↵
    1. Semlali A,
    2. Reddy Parine N,
    3. Arafah M,
    4. Mansour L,
    5. Azzi A,
    6. Al Shahrani O, et al.
    Expression and polymorphism of toll-like receptor 4 and effect on NF-κB mediated inflammation in colon cancer patients. PLoS One 2016; 11: e0146333.
    OpenUrl
  62. 62.↵
    1. Jonchere V,
    2. Marisa L,
    3. Greene M,
    4. Virouleau A,
    5. Buhard O,
    6. Bertrand R, et al.
    Identification of positively and negatively selected driver gene mutations associated with colorectal cancer with microsatellite instability. Cell Mol Gastroenterol Hepatol 2018; 6: 277–300.
    OpenUrl
  63. 63.↵
    1. Jenkins MA,
    2. Hayashi S,
    3. O’Shea AM,
    4. Burgart LJ,
    5. Smyrk TC,
    6. Shimizu D, et al.
    Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology 2007; 133: 48–56.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.↵
    1. Barault L,
    2. Charon-Barra C,
    3. Jooste V,
    4. de la Vega MF,
    5. Martin L,
    6. Roignot P, et al.
    Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res 2008; 68: 8541–8546.
    OpenUrlAbstract/FREE Full Text
  65. 65.↵
    1. Pancione M,
    2. Remo A,
    3. Colantuoni V.
    Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Patholog Res Int 2012; 2012: 509348.
    OpenUrlPubMed
  66. 66.↵
    1. Pino MS,
    2. Chung DC.
    The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138: 2059–2072.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. Simons CC,
    2. Hughes LA,
    3. Smits KM,
    4. Khalid-de Bakker CA,
    5. de Bruïne AP,
    6. Carvalho B, et al.
    A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann Oncol 2013; 24: 2048–2056.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Zahrani A,
    2. Kandil M,
    3. Badar T,
    4. Abdelsalam M,
    5. Al-Faiar A,
    6. Ismail A.
    Clinico-pathological study of K-ras mutations in colorectal tumors in Saudi Arabia. Tumori 2014; 100: 75–79.
    OpenUrl
  69. 69.↵
    1. Siraj AK,
    2. Bu R,
    3. Prabhakaran S,
    4. Bavi P,
    5. Beg S,
    6. Al Hazmi M, et al.
    A very low incidence of BRAF mutations in Middle Eastern colorectal carcinoma. Mol Cancer 2014; 13: 168.
    OpenUrl
  70. 70.↵
    1. Beg S,
    2. Siraj AK,
    3. Prabhakaran S,
    4. Bu R,
    5. Al-Rasheed M,
    6. Sultana M, et al.
    Molecular markers and pathway analysis of colorectal carcinoma in the Middle East. Cancer 2015; 121: 3799–3808.
    OpenUrl
  71. 71.↵
    1. Alghamdi M,
    2. Alabdullatif N,
    3. Al-Rashoud A,
    4. Alotaibi J,
    5. Alhussaini N,
    6. Elsirawani S, et al.
    KRAS mutations in colorectal cancer: relationship with clinicopathological characteristics and impact on clinical outcomes in Saudi Arabia. Cureus 2022; 14: e23656.
    OpenUrl
  72. 72.↵
    1. Saharti S.
    KRAS/NRAS/BRAF mutation rate in Saudi academic hospital patients with colorectal cancer. Cureus 2022; 14: e24392.
    OpenUrl
  73. 73.↵
    1. Bader T,
    2. Ismail A.
    Higher prevalence of KRAS mutations in colorectal cancer in Saudi Arabia: propensity for lung metastasis. Alexandria J Med 2014; 50: 203–209.
    OpenUrl
  74. 74.↵
    1. Alharbi A,
    2. Bin Dokhi H,
    3. Almuhaini G,
    4. Alomran F,
    5. Masuadi E,
    6. Alomran N.
    Prevalence of colorectal cancer biomarkers and their impact on clinical outcomes in Riyadh, Saudi Arabia. PLoS One 2021; 16: e0249590.
    OpenUrl
  75. 75.↵
    1. Dallol A,
    2. Buhmeida A,
    3. Al-Ahwal MS,
    4. Al-Maghrabi J,
    5. Bajouh O,
    6. Al-Khayyat S, et al.
    Clinical significance of frequent somatic mutations detected by high-throughput targeted sequencing in archived colorectal cancer samples. J Transl Med 2016; 14: 118.
    OpenUrl
  76. 76.↵
    1. Rasool M,
    2. Carracedo A,
    3. Sibiany A,
    4. Al-Sayes F,
    5. Karim S,
    6. Haque A, et al.
    Discovery of a novel and a rare Kristen rat sarcoma viral oncogene homolog (KRAS) gene mutation in colorectal cancer patients. Bioengineered 2021; 12: 5099–5109.
    OpenUrl
  77. 77.↵
    1. Naser WM,
    2. Shawarby MA,
    3. Al-Tamimi DM,
    4. Seth A,
    5. Al-Quorain A,
    6. Nemer AM, et al.
    Novel KRAS gene mutations in sporadic colorectal cancer. PLoS One 2014; 9: e113350.
    OpenUrl
  78. 78.↵
    1. Zekri J,
    2. Al-Shehri A,
    3. Mahrous M,
    4. Al-Rehaily S,
    5. Darwish T,
    6. Bassi S, et al.
    Mutations in codons 12 and 13 of K-ras exon 2 in colorectal tumors of Saudi Arabian patients: frequency, clincopathological associations, and clinical outcomes. Genet Mol Res 2017; 16.
  79. 79.↵
    1. Mulla N,
    2. Alshareef A,
    3. Syed AR,
    4. Al-Jahel M.
    Clinico-pathological study of K-ras mutations in colorectal tumors: a single-center retrospective study of 51 patients in Madinah, Saudi Arabia. Cureus 2020; 12: e9978.
    OpenUrl
  80. 80.↵
    1. Almuzzaini B,
    2. Alghamdi J,
    3. Alomani A,
    4. AlGhamdi S,
    5. Alsharm AA,
    6. Alshieban S, et al.
    Identification of novel mutations in colorectal cancer patients using AmpliSeq comprehensive cancer panel. J Pers Med 2021; 11: 535.
    OpenUrl
  81. 81.↵
    1. Abubaker J,
    2. Bavi P,
    3. Al-Harbi S,
    4. Ibrahim M,
    5. Siraj AK,
    6. Al-Sanea N, et al.
    Clinicopathological analysis of colorectal cancers with PIK3CA mutations in Middle Eastern population. Oncogene 2008; 27: 3539–3545.
    OpenUrlCrossRefPubMedWeb of Science
  82. 82.↵
    1. Al-Kuraya K,
    2. Novotny H,
    3. Bavi P,
    4. Siraj AK,
    5. Uddin S,
    6. Ezzat A, et al.
    HER2, TOP2A, CCND1, EGFR, and C-MYC oncogene amplification in colorectal cancer. J Clin Pathol 2007; 60: 768–772.
    OpenUrlAbstract/FREE Full Text
  83. 83.↵
    1. Siraj AK,
    2. Pratheeshkumar P,
    3. Divya SP,
    4. Parvathareddy SK,
    5. Bu R,
    6. Masoodi T, et al.
    TGFβ-induced SMAD4-dependent apoptosis proceeded by EMT in CRC. Mol Cancer Ther 2019; 18: 1312–1322.
    OpenUrlAbstract/FREE Full Text
  84. 84.↵
    1. Alqahtani M,
    2. Grieu F,
    3. Carrello A,
    4. Amanuel B,
    5. Mashour M,
    6. Alattas R, et al.
    Screening for Lynch syndrome in young colorectal cancer patients from Saudi Arabia using microsatellite instability as the initial test. Asian Pac J Cancer Prev 2016; 17: 1917–1923.
    OpenUrl
  85. 85.↵
    1. Nakayama M,
    2. Oshima M.
    Mutant p53 in colon cancer. J Mol Cell Biol 2019; 11: 267–276.
    OpenUrl
  86. 86.↵
    1. Kim JH,
    2. Kang GH.
    Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med 2020; 54: 276–289.
    OpenUrl
  87. 87.↵
    1. Crockett SD,
    2. Nagtegaal ID. Terminology
    , molecular features, epidemiology, and management of serrated colorectal neoplasia. Gastroenterology 2019; 157: 949–966.
    OpenUrlCrossRefPubMed
  88. 88.↵
    1. Guinney J,
    2. Dienstmann R,
    3. Wang X,
    4. de Reyniès A,
    5. Schlicker A,
    6. Soneson C, et al.
    The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21: 1350–1356.
    OpenUrlCrossRefPubMed
  89. 89.↵
    National Comprehensive Cancer Network. Clinical practice guidelines in oncology: colon cancer. [Updated 2021; accessed 2023 Mar 18]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
  90. 90.
    National Comprehensive Cancer Network. Clinical practice guidelines in oncology: rectal cancer. [Updated 2021; accessed 2023 Mar 18]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
  91. 91.↵
    National Health Service. The national genomic test directory for cancer 2021-2022, v 5.0. [Updated 2022; accessed 2023 Mar 18]. Available from: https://www.england.nhs.uk/publication/national-genomic-test-directories/
  92. 92.↵
    National Institute for Health and Care Excellence. Cetuximab, bevacizumab, and panitumumab for the treatment of metastatic colorectal cancer after first- line chemotherapy: cetuximab (monotherapy or combination chemotherapy), bevacizumab (in combination with non-oxaliplatin chemotherapy), and panitumumab (m. NICE technology appraisal guidance [TA242]). [Updated 2012; accessed 2023 Mar 18]. Available from: https://www.nice.org.uk/guidance/ta242/resources/cetuximab-bevacizumab-and-panitumumab-for-the-treatment-of-metastatic-colorectal-cancer-after-firstline-chemotherapy-cetuximab-monotherapy-or-combination-chemotherapy-bevacizumab-in-combination-with--pdf-82600427700421
  93. 93.
    National Institute for Health and Care Excellence. Pembrolizumab for untreated metastatic colorectal cancer with high microsatellite instability or mismatch repair deficiency. NICE technology appraisal guidance (TA709). [Updated 2021; accessed 2023 Mar 18]. Available from: https://www.nice.org.uk/guidance/ta709/resources
  94. 94.↵
    National Institute for Health and Care Excellence. Encorafenib plus cetuximab for previously treated BRAF metastatic colorectal cancer. NICE technology appraisal guidance (TA668). [Updated 2021; accessed 2023 Mar 18]. Available from: https://www.nice.org.uk/guidance/ta668/resources/encorafenib-plus-cetuximab-for-previously-treated-braf-v600e-mutationpositive-metastatic-colorectal-cancer-pdf-82609265839813
  95. 95.↵
    National Cancer Institute. Colon cancer treatment - health professional version. [Updated 2023; accessed 2023 Mar 18]. Available from: https://www.cancer.gov/types/colorectal/hp/colon-treatment-pdq#_269_toc
  96. 96.↵
    Cancer Research UK. Targeted and immunotherapy drugs for advanced bowel cancer. [Updated 2022; accessed 2023 Mar 18]. Available from: https://www.cancerresearchuk.org/about-cancer/bowel-cancer/advanced/treatment/targeted-cancer-drugs-treatment
  97. 97.↵
    1. Bazarbashi SN,
    2. Alzahrani AM,
    3. Rahal MM,
    4. Alshehri AS,
    5. Aljubran AH,
    6. Alsanea NA, et al.
    Colorectal cancer clinical guidelines. In: 2018 Saudi gastrointestinal cancer clinical guidelines. [Updated 2019; accessed 2023 Mar 18]. available from: https://shc.gov.sa/Arabic/NCC/Activities/Pages/NationalClinicalGuideline.aspx
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 44 (9)
Saudi Medical Journal
Vol. 44, Issue 9
1 Sep 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Molecular pathology of colorectal cancer
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Molecular pathology of colorectal cancer
Abdulaziz Alfahed
Saudi Medical Journal Sep 2023, 44 (9) 836-847; DOI: 10.15537/smj.2023.44.9.20230257

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Molecular pathology of colorectal cancer
Abdulaziz Alfahed
Saudi Medical Journal Sep 2023, 44 (9) 836-847; DOI: 10.15537/smj.2023.44.9.20230257
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • colorectal cancer
  • Saudi Arabia
  • molecular pathology
  • genetic alterations

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire